
An authentication solution for iRODS based on the
OpenID Connect protocol

iRODS UGM 2019

Michele Carpené - m.carpen@cineca.it

iRODS UGM 2019

26-27 June 2019, Utrecht, The Netherlands

mailto:m.carpen@cineca.it

Acronyms

2

PAM Pluggable Authentication Module. Provides dynamic
authentication support for applications and services in a
Linux system

Central Authentication Service (CAS) A central endpoint which authenticates users e.g.
towards a specific userbase

IdP Identity Provider. IdPs are responsible to
create/manage a user’s identity and to authenticate
users in a federated context.

OP OpenID Provider, a specific IdP which provides
authentication service using the OpenID standard

OIDC OpenID Connect Protocol

B2ACCESS A Central Authentication Service which acts both as an
OP and as a bridge for multiple IdPs. From the
B2ACCESS web page multiple IdPs can be selected by
the user to authenticate

Rationale
We are going to describe an authentication solution for iRODS based on the
OpenID Connect (OIDC) protocol.

More in details we are going to describe a new Pluggable Authentication
Module (PAM), which allows iRODS to:

● Accept an OIDC token
● Validate the token against an Authentication Service (B2ACCESS)
● Map the user to a local account using the attributes provided by the

Authentication Service once validated the token.

3

The OIDC authentication flow
This is the typical authentication flow, where a user try to get access to a generic
service exploiting the OIDC protocol:

1. The user login to a generic service
2. The service redirects the user to the OpenID Provider (OP) via OIDC protocol
3. The user authenticates himself/herself against the OP using his/her own

credentials and/or the identity associated to one of his IdPs
4. The service receives a response from the OP and based on that, it allows the

user to perform the required action and/or get access to the desired resource

4

Critical points
We want to chain together a generic front-end service and a back-end service
(B2SAFE). The back-end allows users to upload/download data (e.g. from/to
iRODS)

1. The user logins into the front-end service using the OIDC protocol and his/her
federated identity

2. The user gets access to the B2SAFE service with the same identity, and
he/she is mapped to a local account

Question: How the front-end service can pass the user identity credentials to
B2SAFE to authenticate the user?

5

Proposed solution for the B2SAFE
We need to satisfy two basic requirements

1. The user identity credentials must be validated
2. The user federated identity must be mapped to an iRODS’s local account

Solution:

1. After the user logins successfully into the front-end he/she receives a ID token, an access token and
a refresh token. These tokens are released by the B2ACCESS.

2. The user tries to access the B2SAFE using the access token
3. The B2SAFE validates the token against the same B2ACCESS endpoint, and map the user to the

local username (using the new PAM module)

6

7

Implementation
We implemented the proposed solution as a PAM module (
https://github.com/EUDAT-B2SAFE/pam-oauth2) , written in C++, which needs to
be compiled and configured.

Using PAM as a framework permits to have more flexibility compared to other
solutions (e.g. new iRODS authentication plugin)

8

https://github.com/EUDAT-B2SAFE/pam-oauth2

How it works
Using the iRODS PAM mechanism the user has to login with the PAM authentication method, but instead
of the password of the iRODS local account he/she uses the access token.

The PAM module pam_oauth2.so receives the token and issues a request to the B2ACCESS’s
token_validation_ep

{

“email”: ”roberto@email.com”,

“Token_type”: “Bearer”,

“exp”: 1520001942,

“iat”: “1519998342”,

}

9

mailto:roberto@email.com

Two Concrete Use Case
The solution has been tested with two front-end services in the context of the EOSC-hub project (
https://www.eosc-hub.eu)

1. The first one is an HTTP interface (https://github.com/EUDAT-B2STAGE/http-api), which ex-poses
some functions to upload/download data using the iRODS python library
(https://github.com/irods/python-irodsclient)

2. The second one is a data management tool called DataHub
(https://www.eosc-hub.eu/services/EGI%20DataHub), which is able to mount external storage if this
storage is exposed through a WebDAV interface.

In the second use case the DataHub takes care both of user authentication and hence of token refreshing.

10

https://www.eosc-hub.eu
https://github.com/EUDAT-B2STAGE/http-api
https://www.eosc-hub.eu/services/EGI%20DataHub

Benefits and Limits
Proposed solution solves the aforementioned authentication issue and reuse the
OIDC tokens without requiring the user to login twice.

1. Flexibility in the account mapping
2. Possibility to create a user on the fly

Limits:

1. We need to know the local iRODS username at the login time, because this is
required by iRODS PAM

2. The token has limited lifetime (refresh token could be used, but front-end
must support it)

11

Conclusions
We have described the implementation of a solution to add support of the OpenID
Connect protocol to iRODS relying on its PAM authentication mechanism

1. Flexible solution for different use cases
2. Single identity based
3. Validation of OIDC credentials

Future developments can be envisioned about user mapping… (dynamic
approach vs static approach, regular expressions...)

12

Acknowledgements
The implementation of the PAM module for the OIDC protocol started forking the
code of the OAuth2 PAM module by Alexander Kukushkin (
https://github.com/CyberDemOn/pam-oauth2)

13

https://github.com/CyberDemOn/pam-oauth2

