
Migrating Data
When
Decommissioning
PetaBytes of
Storage

John Constable
Informatics Support Group, ICT
jc18@sanger.ac.uk
@kript

mailto:jc18@sanger.ac.uk

Imagery Area

● 19PB of genomic data in 399 Resources
on 76 resource servers over six Zones

● 41 servers need decommissioning this
year, another 10 next year; aka ~10 PB
across three types of hardware.

● Generating 10TB/data week, expecting
to go up to 760TB if the scientists turn
on all the PacBio/Nanopore sequencers
they might buy for upcoming programs
like 'Tree of Life'

Background

https://docs.irods.org/4.2.6/system_overview/tips_and_tricks/#decom
missioning-a-storage-resource

Advice is;

1. Determine which iRODS server will host the new device.

2. Create a new iRODS resource that uses the new device.

3. Add the new resource to the appropriate resource hierarchy (could
be standalone).

4. Replicate data to the new resource.

5. Trim data from the to-be-retired resource.

6. Remove the to-be-retired resource.

7. Safely disconnect the to-be-retired device.

Imagery and graph area 4. Replicate data to the new resource.

Imagery and graph area

Yak Shaving
Any apparently useless activity
which, by allowing you to
overcome intermediate difficulties,
allows you to solve a larger
problem.

"I was doing a bit of yak shaving
this morning, and it looks like it
might have paid off."

Definition credit ghyston.com
Photo by Bryan Minear on Unsplash

https://www.ghyston.com/yak-shaving-and-other-tech-terms/

Imagery and graph area

Standing On
The Shoulders
Of Giants
This is mostly the work of my
colleague Brett Hartley, with input
from Terrell and the iRODS team

Solution One: iphymv within a single subtree

 “Physically move a file in iRODS to another storage resource.

 Note that if the source copy has a checksum value associated with it,
a checksum will be computed for the replicated copy and compared with

the source value for verification.”

(from the man page)

Solution One: iphymv within a single subtree - REJECTED

 Issue 4010 - “repl to resource with existing replica does nothing”

“Nothing happens. Repl logic short-circuits resource plugins by detecting
the good replica and determining that there is nothing to do.”

https://github.com/irods/irods/issues/4010

Solution Two: move resource out of hierarchy and then iphymv.

 As a bonus, this would also stop new files being written to the
resource!

Solution Two: move resource out of hierarchy and then iphymv - REJECTED

In 4.1.x the resource location is stored as a string for each object, e.g.

ils -l jc18_2G_20170710

jc18 0 root;replicate;seq-red;red4;irods-seq-i21-de 1744830464 2018-04-18.15:11
& jc18_2G_20170710

jc18 1 root;replicate;seq-green;green1;irods-seq-sr01-ddn-ra08-33-34-35 1744830464
2018-04-18.15:11 & jc18_2G_20170710

So every object would need an SQL UPDATE operation. We have hundreds of thousands of
objects in each resource and it’s a one-off, non-resumable operation.

Solution Two: move resource out of hierarchy and then iphymv - REJECTED

Also, we were slightly spooked by

#4402 - “renaming resource with substring affects all similarly named resources”

https://github.com/irods/irods/issues/4402

Solution Three: itrim everything off the resource, mark as down, then rebalance

Solution Three: itrim everything off the resource, mark as down, then rebalance

REJECTED

 This leaves us with a period of time where each object only has 1 replica, which involves
more risk than we were willing to accept.

Oh, and itrim cowardly and unreasonably refuses to trim below two objects, especially in a
compound tree with two leaves below a replication resource

Solution Four: iphymv out of the composite resource, then back in

Solution Four: iphymv out of the composite resource, then back in

ACCEPTED!

Solution Four: iphymv out of the composite resource, then back in

ACCEPTED!

BUT!

Issue: 4212 - “iphymv doesn't move file in composite resource tree”

NOW we have Three Copies!

This could be something about our rulebase but...

https://github.com/irods/irods/issues/4212

Solution Four: iphymv out of the composite resource, then back in

Solution Four: iphymv out of the composite resource, then back in

 So we need a way to address the three replicas - Brett scripted a tool using the python API
(including adding functionality as merge request #162!)

https://github.com/irods/python-irodsclient/pull/162

Solution Four: iphymv out of the composite resource, then back in

However, files are still being written to the resource, while we drain it.

Solution:

Set minimum_free_space_for_create_in_bytes (See Using free_space check on
unixfilesystem resources in the manual) to be slightly larger than the filesystem backing the
resource. This ensures that no files can be written to the resource, even once it is emptied.

https://docs.irods.org/4.1.12/manual/best_practices/#using-free_space-check-on-unixfilesystem-resources
https://docs.irods.org/4.1.12/manual/best_practices/#using-free_space-check-on-unixfilesystem-resources

Solution Four: iphymv out of the composite resource, then back in

If you don't already have one, find a resource outside of the composite resource which is
large enough to hold the largest file in the retiring resource.

Fortunately, we can use the demoResc’s on the IRES’s, since even the largest files are only
600GB At the moment*, as long as we’re careful about parallelisation...

Solution Four: iphymv out of the composite resource, then back in

So for each file all we need to do is;

iphymv -M -S $retiringresourcehierarchy -R $outsideresource $file

iphymv -M -S $outsideresource -R root $file

irods-triple-replicas/triples.py $file

tee $file >> movedfiles.log

Solution Four: iphymv out of the composite resource, then back in

Terrell came up with a one liner to do most all of this

(adjusted for an attempt at readability)

#!/bin/bash

SIDECAR="demoResc"

HIER_TO_BE_DRAINED="root;replicate;red;red3;irods-seq-i18-bc"

iquest "iphymv -M -S \"${HIER_TO_BE_DRAINED}\" -R \"${SIDECAR}\"
\"%s/%s\" && iphymv -M -S \"${SIDECAR}\" -R "root" \"%s/%s\"; echo
%s/%s > trimmedfile; irods-triple-replicas/triples.py -f trimmedfile;
cat trimmedfile >> movedfiles; rm trimmedfile" "select COLL_NAME,
DATA_NAME, COLL_NAME, DATA_NAME, COLL_NAME, DATA_NAME where
DATA_RESC_HIER = '${HIER_TO_BE_DRAINED}'"

Imagery and graph area

Disclaimers:

1. We have tested this
successfully on our
development zone, but have
yet to move production data.

2. No Yaks were harmed in the
making of this talk

Thank you for staying awake listening!

Questions?

Credits!

Brett Hartley, ISG

Helen Cousins, ISG for the Yak Photo’s in-situ

Terrell and the iRODS Team
Baffalo by Qi studio from the Noun Project

Centaur by Eliricon from the Noun Project

Superhero by Juan Pablo Bravo from the Noun Project

Sidecar By DiabloTim, Oakland (from the Noun Project)

Two Yaks Photo by DDP on Unsplash

https://thenounproject.com/search/?q=yak&i=1687455
https://thenounproject.com/search/?q=shrug&i=158618
https://thenounproject.com/search/?q=superhero&i=23554
https://thenounproject.com/search/?q=sidecar&i=319838
https://unsplash.com/photos/LDBDlwk9Ero

