
iRODS UGM 2019, June 25-28, 2019, Utrecht, Netherlands

Copyright 2019 © CINECA

1

Integration of iRODS data workflows in an extensible
HTTP REST API framework

Mattia D’Antonio

CINECA - Interuniversity

Consortium

Casalecchio di Reno (BO) -

Italy

m.dantonio@cineca.it

Claudio Cacciari

CINECA - Interuniversity

Consortium

Casalecchio di Reno (BO) –

Italy

c.cacciari@cineca.it

Giuseppa Muscianisi

CINECA - Interuniversity

Consortium

Casalecchio di Reno (BO) –

Italy

g.muscianisi@cineca.it

ABSTRACT

We developed a set of HTTP REST APIs on top of iRODS to support users of different communities to automate

both ingestion and retrieval data workflows. We built a common REST APIs layer by implementing basic

functionalities, including the interaction with iRODS, within an extensible framework (RAPyDO: Rest Apis with

Python on Docker) that we developed and adopted to build communities-specific REST APIs. More in details, we

are collaborating with the EUropean DATa infrastructure EUDAT Collaborative Data Infrastructure (CDI);

European projects like EOSC-hub and SeaDataCloud; national initiatives in collaboration with Telethon Foundation

(a non-profit organization for genetic diseases research) and SIGU (Italian Society for Human Genomics). All

endpoints are written by using the Python language on the Flask framework. APIs are served through an uWSGI

web server deployed within a Docker container. We created a wrapper of the python irods client (PRC) to let both

the core framework and communities specific APIs for easily interact with iRODS by supporting all main

authentication protocols like native passwords, Pluggable Authentication Modules (PAM), Grid Security

Infrastructure (GSI). To be able to support all required authentication methods we contributed to the PRC

development by implementing authentication modules for both GSI and PAM. Most of iRODS-based functions that

we developed can be mapped against corresponding icommands like ils, iget, iput, imv, icp, imeta, irule, iticket but

also more complex functionalities have been realized, for instance streamed read/write operations from/to network

sockets. To be able to execute data intensive and complex workflows, we also introduced an asynchronous layer

implemented on Celery, a task management queue based on distributed message passing.

Keywords

HTTP API, Python, data management, iRODS, REST API, authentication, PAM, GSI

Michele Carpenè

CINECA - Interuniversity Consortium

Casalecchio di Reno (BO) - Italy

m.carpen@cineca.it

Giuseppe Fiameni

CINECA - Interuniversity Consortium

Casalecchio di Reno (BO) – Italy

g.fiameni@cineca.it

2

INTRODUCTION

Data management is becoming one of the most challenging topic in computer science, since requirements for data

production and manipulation often overcame whom for data analysis. We at CINECA [1], the Italian Interuniversity

Consortium, are involved in many European Projects and National Initiatives strongly based on the requirement of

efficient and flexible data workflows. Every project has its own very specific set of constraints and requirements, but

by comparing all of them, it is possible to identify several common needs. By working on these requirements, a

shared data management layer can be implemented and used as a base for every data oriented project. In this paper,

we will describe our current solution, based on a data management layer built over iRODS. A quick overview of the

main projects that involve our group can highlight the common needs we are working on.

EUDAT Collaborative Data Infrastructure (CDI)

The EUDAT CDI [2] is a European e-infrastructure of integrated data services and resources to support research.

This infrastructure and its services have been developed in close collaboration with over 50 research communities

spanning across many different scientific disciplines and involved at all stages of the design process. The EUDAT

CDI network provides a range of services for data upload, retrieval, identification, description, replication through a

series of core services like B2SAFE [3] (data storage), B2STAGE [4] (data transfer) and many other (like

B2HANDLE, B2SHARE, B2FIND, B2NOTE).

B2SAFE is a robust, safe and highly available service, which allows community and departmental repositories to

implement data management policies on their research data across different geographical and administrative

domains in a trustworthy manner. Currently iRODS is used at the EUDAT sites for the federation of the data nodes

and the node-wise policy enforcement.

To offer functionalities for data transfer between EUDAT resources and external computational facilities we built

the B2STAGE service. B2STAGE supports different functionalities allowing users to either stage data outside

EUDAT or ingest computational results while maintaining the coherency of associated Persistent Identifiers (PIDs).

This service offers two interfaces, one based on the GridFTP protocol [5] and one based RESTful HTTP endpoints.

The main requirements of this service are the ease of use, the interoperability with other EUDAT services and the

support for the automation of ingestion and retrieval workflows. The HTTP API interface of B2STAGE is built by

adopting the common strategies discussed in this paper on top of B2SAFE and iRODS. Furthermore, B2STAGE

HTTP-API is in turn the base to build other services (like SeaDataCloud HTTP API, see paragraph below) and is

part of the EOSC-HUB.

EOSC-hub

The European Open Science Cloud (EOSC) [6] aims to offer open and seamless services for archiving,

management, analysis and re-use of research data, across different scientific disciplines. Within this project the Hub,

a single contact point for European researchers, represents a particular role and innovators to discover, access, use

and reuse a broad spectrum of resources for advanced data-driven research. EOSC-hub brings together multiple

service providers from the EGI Federation [7], EUDAT CDI, INDIGO-DataCloud [8] and other major European

research infrastructures to deliver a common catalogue of research data, services and software for research. Through

EUDAT CDI, B2STAGE is part of the EOSC-hub network, bringing to an increased level of flexibility and

interoperability required from this service.

3

SeaDataNet - SeaDataCloud

SeaDataNet [9] is a standardized infrastructure for managing the large and diverse data sets collected by the

oceanographic fleets and the automatic observation systems. This infrastructure aims to aggregate and standardize

the highly fragmented marine observing system based on more than 600 scientific data collecting laboratories (from

governmental organizations to private industries) in the countries bordering the European seas. Data are collected by

using various sensors on board of research vessels, submarines, fixed and drifting platforms, airplanes and satellites,

to measure physical, geophysical, geological, biological and chemical parameters, biological species etc.

SeaDataNet infrastructure was implemented during the SeaDataNet project (2006-2011), grant agreement 026212,

EU Sixth Framework Programme and consolidated in the second phase, SeaDataNet 2 project (2011-2015), grant

agreement 283607, EU Seventh Framework Programme. SeaDataCloud project (2016-2020), grant agreement

730960, EU H2020 programme, is the third (and current) phase and it aims at considerably advancing SeaDataNet

Services and increasing their usage, adopting cloud and High Performance Computing technology for better

performance. This background highlights the main requirements that these services will have to satisfy: efficient and

simple ingestion interfaces; support for data workflows for data manipulation, format conversion, quality

verification; facilities for data searching and retrieval. SeaDataCloud (SDC) CDI HTTP API are built over

B2STAGE HTTP API by extending the EUDAT services with the inclusion of custom endpoints. In particular, SDC

introduced the integration with Rancher [10] for the execution of quality check workflows based on docker

containers [11] and greatly enhanced the use of asynchronous endpoints (implemented by means of the Celery [12]

framework).

The Genomic Repository

The Genomic Repository is a data and metadata archive born to meet the requirements from two different partners

and leading to the definition of a single solution adopted for both the platforms. The Telethon Foundation [13], a

non-profit organization for genetic diseases research, is involved in the Undiagnosed Diseases Program (UDP) [14]

pursuing the goal of providing a diagnosis to pediatric patients with a genetic disease without a name. To match this

goal all clinical and genomic data have to be stored into a common platform able to compare such information with

similar databases across the world, looking for similarities and hopefully the identification of second cases.

Genomic data, obtained from massive next-generation sequencing (NGS) platforms, require computationally

intensive analyses available on HPC computational centers.

The second use case is from the NIG (Network of Italian Genome) project of the Italian Society for Human

Genetics (SIGU) [14]. The main purpose of this project is the definition of an Italian Reference Genome for the

identification of genes responsible for genetic diseases and susceptibility genes for complex diseases in both basic

and translational researches; genetic variants responsible for inter-individual differences in drug response in the

Italian population; new targets for both diagnosis and treatment of genetic diseases. This project required the

creation of a shared database containing data from nucleic acids sequencing of hundreds to thousands of Italian

subjects. Sequencing data are then analyzed by executing HPC bioinformatics workflows and results are stored into

the database and linked to phenotypic information. A final procedure collects all data to produce aggregated results

such as distinctive Italian variants, variant frequencies, variant geographical distribution, and genotyping

distribution.

Both the projects required to access to information in an automatable way to be able to interact with external

initiatives and the opportunity to share data on HPC clusters in a secure way. These requirements have been

achieved with the adoption of HTTP APIs and iRODS. In particular, iRODS has been identified as an important

technology to make data available on computing nodes by preserving the high security levels needed to treat with

human clinical data.

4

THE RAPYDO FRAMEWORK

To share technological solutions in very different contexts, from oceanography to genomics, we implemented a

common framework adopted by all these projects and named RAPyDo [15] (acronym for Rest Api with Python on

Docker). RAPyDo is a wrapper for docker-compose [16], a tool for defining and running multi-container Docker

[17] applications. Docker is a tool implementing high-level APIs to provide lightweight containers that run

processes in isolated environments by packaging an application and its dependencies in a virtual container.

RAPyDO is able to merge several levels of configurations (base configurations, project-level configurations and

deployment-level configurations) to create dynamic docker-compose definitions allowing easy deployment on every

platform (from its own laptop for development purpose to production servers). Furthermore, RAPyDO is an

extensible and modular framework and it implements basic functionalities and services integrations that can be used

or extended by projects. RAPyDo supports iRODS as a base technology for data management and implements a

wrapper client based on the python-irods-client [18]. RAPyDO projects can be administrated and deployed through

a controller script implementing all the logics over docker-compose and able to merge configurations (e.g. to

enabled and disabled supported services) and functionalities (e.g. base and custom endpoints). An overview of the

main components is described below.

RAPyDo Architecture

RAPyDO is mostly implemented in Python programming language, in particular the controller and the http-api

components. An optional Web interface is implemented with Angular.

HTTP-APIs are powered by python Flask micro-framework and provides access to set of RESTful HTTP API

connected to all the other backend services (e.g. database, tasks queue, data storage, etc). When development mode

is enabled, REST endpoints are directly served by Flask through uWSGI, in production mode an nginx reverse

proxy is deployed ahead of the backend to enhance security and introduce SSL certificates management. Supported

services, when enabled, are automatically deployed as docker containers but can be configured as external resources

with independent deployment. An overview of the main components is show in Figure 1

Supported services

Databases

RAPyDo supports several databases and in particular relational databases (MySQL, MariaDB, PostgreSQL,

SQLite), graph databases (Neo4j) and no-sql databases (MongoDB). All these databases can be enable to support the

authentication functionalities to manage usernames, password, groups and sessions (based on JWT tokens)

Celery

HTTP-APIs endpoints typically implement synchronous operations by directly providing to the client the result of

the requested resources. This basic schema implies fast responses (no more than few seconds) to avoid connection

timeouts but this not always can be achieved, in particular when handling with huge amount of data. Asynchronous

endpoints provide to the client an operation identifiers than can be used to track the progress of the request until it

completes. RAPyDo adopted the Celery framwork to introduce asynchronous operations. Celery is a task

management queue based on distributed message passing and built on top of RabbitMQ.

iRODS

RAPyDo adopted iRODS as base layer for data management, since this technology offers several valuable

advantages. iRODS implements data virtualization, allowing access to distributed storage assets under a unified

name-space and allows to access from multiple clients: command line (icommands), web interface (webdav), ftp

5

transfer (grid-ftp). Furthermore, it integrates certificate-based authentication with the GSI plugin, irules to trigger

actions based on events at collection or data objects level, access control list (ACL) mechanisms to allow for the

implementation of complex access rights policies preserved at every level, regardless of the access method.

The different access methods and the support for ACLs allow to successfully integrating the software stack with the

use High Performance Clusters (HPC) for analysis purpose. In particular all data stored into iRODS can be shared

on the different components by preserving all the security policies.

Rancher

The use of High Performance Clusters is not always possible or flexible enough. In specific contexts, Docker can be

used to execute analyses, quality checks, data validation tasks and other project-specific software. Rancher is an

open source multi cluster management platform used to deploy and manage docker containers (through the Cattle

engine up to version 1.6 and through Kubernetes from version 2.0). RAPyDO HTTP APIs are able to communicate

with Rancher APIs (version 1.6) to automatically deploy and interact with docker containers executed in a

distributed environments.

Figure 1. Architecture of the main components of the RAPyDo framwork

IRODS CLIENT

iRODS officially supports Python through the python-irods-client [18] (PRC), an open source project released on

Github. RAPyDO HTTP APIs integrates PRC to implement all iRODS-based operations on both Flask (HTTP sync

endpoints) and Celery (asynchronous tasks). We created a wrapper client based on the python-irods-client to

implement utility operations used from both endpoints and tasks. Most of the methods implemented by this client

can be divided in three main categories:

 Methods that can be strictly mapped on icommands, e.g. list(), mkdir(), copy(), put(), get(), move(),

remove(), set_permissions(), get_metadata(), ticket() and others. These methods can be respectively

mapped on ils, imkdir, icopy, iput, iget, imv, irm, ichmod, imeta ls, iticket.

6

 Simple utilities methods without a corresponding icommand, e.g. exists(), is_collection(), is_dataobject()

and others

 Method to perform more complex operations, e.g.

o write_file_content(path, string)

o get_file_content(path) returning a string

o read_in_chunks(path, chunk_size) returning an iterator

o read_in_streaming(path) directly streaming data object content as Flask stream

o write_in_streaming(path) directly writing data object from Flask streams

This list not exhaustive since it only include general purposes methods, took as examples.

Authentication

RAPyDO HTTP APIs support all main iRODS authentication protocols and in particular native credentials, Grid

Security Infrastructure (GSI) and Pluggable authentication modules (PAM).

Native credentials (usernames and passwords defined into the iRODS database) is the default authentication

protocol and the python-irods-client natively supports it. In a production environment, iRODS is often secured by

means of GSI certificates or by using heterogenes methods (e.g. LDAP) supported by PAM protocol. Since PRC

was lacking the support for GSI and PAM authentication, we contributed to the development by implementing the

specific missing modules. The GSI integration is a completed task and the contribution is merged into the main

branch since around January 2017. The PAM integration is completed respect to some use cases but requires

improvements to achieve a larger audience. The current PAM module is merged into the main branch since

December 2018.

To implement the Pluggable authentication modules (PAM) support we introduced a PluginAuthMessage to

encapsulate PAM requests

class PluginAuthMessage(Message):

 _name = 'authPlugReqInp_PI'

 auth_scheme_ = StringProperty()

 context_ = StringProperty()

The same class is also used to perform GSI requests.

PAM requests are propagated to the iRODS server by sending ah authorization request with type RODS_API_REQ

and apiNumber 1201, equivalent to AUTH_PLUG_REQ_AN. The body of the message is a PluginAuthMessages

containing a context based on user, pam password and ttl.

ctx_user = '%s=%s' % (AUTH_USER_KEY, self.account.client_user)

ctx_pwd = '%s=%s' % (AUTH_PWD_KEY, self.account.password)

ctx_ttl = '%s=%s' % (AUTH_TTL_KEY, "60")

ctx = ";".join([ctx_user, ctx_pwd, ctx_ttl])

message_body = PluginAuthMessage(

 auth_scheme_=PAM_AUTH_SCHEME,

 context_=ctx

)

7

auth_req = iRODSMessage(

 msg_type='RODS_API_REQ',

 msg=message_body,

 int_info=1201

)

The server response in stored in a AuthPluginOut:

class AuthPluginOut(Message):

 _name = 'authPlugReqOut_PI'

 result_ = StringProperty()

Containing a new temporary password with validity equivalent to the negotiated ttl and used to initialize a native

password connection

auth_out = output_message.get_main_message(AuthPluginOut)

self._login_native(password=auth_out.result_)

To implement the Grid Security Infrastructure (GSI) a more complex workflow has been introduced. As high-level

overview, the GSI protocol can be summarized in three main steps:

1) send to iRODS server a message to request GSI authentication. This step is similar to the PAM use case but

providing a different auth_scheme (GSI_AUTH_PLUGIN) and a different context

(AUTH_USER_KEY=self.account.client_user)

2) create a context handshaking GSI credentials by creating a GSI SecurityContext to send the GSI client

token and to receive corresponding token from the server

3) Complete the protocol by sending the username through a requesto to the iRODS server with an apiNumber

704, equivalent to AUTH_RESPONSE_AN

CONCLUSIONS

In this paper, we presented a modular and extensible framework (RAPyDo) that we developed to share common

strategies among European and National projects whom we are involved into. Our main intention is to extract from

each project all requirements that can be satisfied by applying previously identified and implemented solutions. New

requirements are analyzed to identify candidates for generalizable solutions to be included in the framework and to

be reused in further projects. In this way the framework can growth and enhance itself at each application. RAPyDo

supports several services (databases, task queues, interfaces) and in particular adopted iRODS as basic data

management technology. The HTTP APIs module included in RAPyDo also introduces a python client based on the

official python-irods-client (PRC) implementing utility functions and authentication protocols like GSI and PAM.

We already adopted this framework in several European and National projects like the EUDAT Collaborative Data

Infrastructure (CDI), the Hub of European Open Science Cloud (EOSC-hub), SeaDataCloud HTTP APIs and a

Genomic Repository built in collaboration with Telethon Foundation and Italian Society for Human Genetics

(SIGU). All these projects are data repository based on iRODS technology. Furthermore, the framework is also

8

adopted onto European Projects not based on iRODS, like I-Media Cities (grant agreement N° 693559E from the

uropean Union's Horizon 2020 research and innovation programme) and Meteo Italian Supercomputing Portal

MISTRAL (funded under the Connecting Europe Facility (CEF) – Telecommunication Sector Programme of the

European Union). As future perspectives, we plan to enhance the current implementation by expanding the number

of supported projects. Furthermore, we need to fight against the natural obsolescence of adopted solutions by

continuously improve the framework by investigating state-of-the art technologies candidate to be included in the

supported stack.

ACKNOWLEDGMENTS

The implementation of the GSI and PAM modules started by forking the code of the python irods client [18] and

PRC is also a base component of our APIs.

For the implementation of the GSI plugin a special mention is for Roberto Mucci and Paolo D’Onorio De Meo, not

included as authors of this paper. Paolo D’Onorio De Meo is also one of the main developers of the RAPyDo

framework.

EUDAT is funded by from the European Union's Horizon 2020 research and innovation programme

under grant agreement No. 654065.

EOSC-hub is funded by from the European Union's Horizon 2020 research and innovation programme

under grant agreement No. 777536

SeaDataCloud is funded by from the European Union's Horizon 2020 research and innovation programme

under grant agreement No. 730960

RAPyDo is not strictly bound to any project and it is publicly released as open source code on github [15] under

MIT License. Permission is hereby granted, free of charge, to any person obtaining a copy of the software and

associated documentation files to deal in the Software without restriction, including the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software.

 REFERENCES

[1] CINECA - Italian Interuniversity Consortium, https://www.cineca.it/en

[2] EUDAT CDI, https://eudat.eu/eudat-cdi

[3] B2SAFE, https://www.eudat.eu/b2safe

[4] B2STAGE, https://www.eudat.eu/b2stage

[5] GridFTP - Globus Toolkit, http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/

[6] EOSC-hub, https://www.eosc-hub.eu

[7] EGI Federation, https://www.egi.eu/federation/

[8] INDIGO DataCloud, https://www.indigo-datacloud.eu/

[9] SeaDataNet, https://www.seadatanet.org/

[10] Rancher: Container Orchestration, https://rancher.com/

[11] Docker Container Platform, https://www.docker.com/

[12] Celery: Distributed Task Queue, http://www.celeryproject.org/

https://eudat.eu/eudat-cdi
https://www.eudat.eu/b2safe
https://www.eudat.eu/b2stage
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
https://www.eosc-hub.eu/
https://www.egi.eu/federation/
https://www.indigo-datacloud.eu/
https://www.seadatanet.org/
https://rancher.com/
https://www.docker.com/
http://www.celeryproject.org/

9

[13] Telethon Foundation, http://www.telethon.it/en

[14] SIGU - Italian Society for Human Genetics, https://www.sigu.net/

[15] RAPyDo Framework, https://github.com/rapydo

[16] Docker Compose, https://docs.docker.com/compose/

[17] Docker Container Platform, https://www.docker.com/

[18] Python iRODS Client (PRC), https://github.com/irods/python-irodsclient

http://www.telethon.it/en
https://www.sigu.net/
https://github.com/rapydo
https://docs.docker.com/compose/
https://www.docker.com/
https://github.com/irods/python-irodsclient

