Surgical Critical Care Initiative (SC2i): Leveraging iRODS to Accomplish Multi-Site Data Collection, Harmonization, and Analytics to Generate Clinical Decision Support Tools

Andy MacKelfresh MBA, Duke Clinical Research Institute – Clinical Research Informatics Project Leader

Contributions by Justin James, RENCI
Disclaimer

The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

Neither I nor my family members have a financial interest in any commercial product, service, or organization providing financial support for this research.

Research protocols for these studies were reviewed and approved by the appropriate Institutional Review Board (IRBs).

This work was prepared by a military or civilian employee of the US Government as part of the individual’s official duties and therefore is in the public domain and does not possess copyright protection (public domain information may be freely distributed and copied; however, as a courtesy it is requested that the Uniformed Services University and the author be given an appropriate acknowledgement).
Surgical Critical Care Initiative (SC2i)

<table>
<thead>
<tr>
<th>FUNDING SOURCE – STRUCTURE – REPORTING</th>
<th>DUAL FOCUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funded by DOD</td>
<td>Leveraging clinical and -omics data to develop ‘precision’ CDSTs in the acute care space</td>
</tr>
<tr>
<td>Launched in 2013 and designated as a USU Center in 2016</td>
<td>Improving outcomes and lowering costs in both military and civilian systems</td>
</tr>
<tr>
<td>A Federal / Non-Federal partnership</td>
<td></td>
</tr>
<tr>
<td>Biannual Oversight Meetings</td>
<td></td>
</tr>
</tbody>
</table>

Leveraging clinical and -omics data to develop ‘precision’ CDSTs in the acute care space

Improving outcomes and lowering costs in both military and civilian systems
Gap Addressed in Critical Care

• **Problem:** Management of battle injured and civilian trauma and surgical patients remains largely dependent upon traditional (visually-guided) clinical decision-making.

• **Solution:** Develop decision support tools using evidence-based clinical data together with cutting-edge science in the understanding of physiological, psychological, and physical factors that govern the body’s response to trauma to guide management of surgical care.
Standardize Data Collection

Critically ill patient
• Complications of critical injury or illness
• Stably injured
• Acutely injured

Event and Time-Driven Collection
- T0
- T1
- T3
- T7
1/week until discharge if 'no event'

Serum:
• Cytokines
• Chemokines
• Proteases
• DAMPs / TLRs
• FACS, PAXgene

Tissue biopsy:
• Wound healing associated genes
• Osteogenesis
• Pathogen specific PCR
• Quantitative bacteriology
• Pathogen Sequencing
• RNA Sequencing

Wound effluent:
• Cytokines
• Chemokines
• Proteases
• RNA Sequencing

Protein Expression
Gene Expression
ProCalcitonin
Flow Cytometry
Sequencing
Data Workflow

BIO-BANK
- Freezer Storage
- Reverified Metadata Entry
- Automated Quality Assessments
- Environment Control Alerts
- Secure Facilities
- 24/7 Facility Support

DEVELOPMENT
- Reproducible Methods
- GCLP Standards
- Progression
- Consistent Reverification
- Thorough Documentation
- DNA / RNA
- Cytokines
- Microbiome
- Clinical Data
- Participant Data and Sample Acquisition
- Alignment and Quality Control

METADATA
- Performance Consistency Studies
- Data Usage Statistics
- Methods Effectiveness Studies
- Refined Development Methods
- Improved Predictive Modeling
- Expert Analysis
- Testing & Refinement
- PEER REVIEW
- Model Design
- Machine Learning
- AWS

USU | sc2i
Uniformed Services University
Surgical Critical Care Initiative
Clinical Decision Support Tools

- **MTP app guideline developed**
 - In-use @ Duke & Emory/Grady
 - Deploying @ Upenn
 - Building database to track clinical utility

- **In JTS-CPGs / In-use @ WRNMMC**
 - Used on 22 combat traumas
 - Building database to track clinical utility

- **Deployed @ Emory**
 - Deploying @ Grady
 - Building database to track clinical utility

CDSTs in-development

<table>
<thead>
<tr>
<th>DSSTs in-development</th>
<th>Anticipated deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendectomy</td>
<td>FY21</td>
</tr>
<tr>
<td>WoundX™</td>
<td>FY23</td>
</tr>
<tr>
<td>OA Dx</td>
<td>FY23</td>
</tr>
<tr>
<td>VTE Dx</td>
<td>FY23</td>
</tr>
<tr>
<td>Pneumonia Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>Bacteremia Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>sTBI Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>AKI Dx</td>
<td>FY24</td>
</tr>
<tr>
<td>HO Dx</td>
<td>FY25</td>
</tr>
<tr>
<td>ARDS Dx</td>
<td>FY25</td>
</tr>
<tr>
<td>SBO Dx</td>
<td>FY25</td>
</tr>
</tbody>
</table>
Amazon Web Services GovCloud Architecture

Public Internet

user requests

AWS firewall

CDR VPC

GovCloud

EC2 VMs

iRODS

ETL

Databases

Elastic Block Storage

RDS

Duke IdM

USU
Uniformed Services University

SC2i
Surgical Critical Care Initiative
iRODS Authentication

- Users are authenticated with Shibboleth with two factor authentication
- Once authenticated via Shibboleth, users are automatically created in iRODS.
iRODS Authorization

- Users are assigned to groups in Grouper (https://www.internet2.edu/products-services/trust-identity/grouper/)
- When a user logs into CloudBrowser, groups in iRODS are created or updated as needed for each study/site combination.
- Users belong one or more groups in the following categories:
 - Studies (example: WounDx, TDAP, OpenAbdoment, ...)
 - Sites (Duke, Emory, WalterReed, NavalMedicalResearchCenter)
- Authorization on iRODS objects requires access to a study and site.
- iRODS groups were created for each combination of site/study.

Examples:
- TDAPDuke
- WounDxEmory
Example Authentication/Authorization

1. User Accesses URL

2. Redirect to IDP

3. User Authenticates

4. Return Groups: Duke, TDAP, WounDx

5. Create User (If Necessary)

6. Modify Groups: DukeTDAP and DukeWounDx

7. User Provided Access to CDR / Cloud Browser
iRODS Rules

- Python rules perform the following tasks:
 - Determine if ingested files are of interest (based on file name and location)
 - Validates and loads input data to a back end database
 - Periodic delay rule determines if new output generation is required; validates and generates new output files
 - Policy enforcement points are used to log all interactions for auditing purposes.
iRODS Metadata

• Progress of data loads is stored in metadata. This includes:
 • The validation and load status for input files
 • Time of last input data submission and output generation (for each study)
 • Progress of output file generation and validation