RODS

Technology Update

Terrell Russell, Ph.D. June 25-28, 2019
@terrellrussell IRODS User Group Meeting 2019
Chief Technologist, iRODS Consortium Utrecht, Netherlands

In The Last Year 1RODS

IRODS Release Issues Closed
41.12 36
4.2.4 31
4.2.5 57
4.2.6 27
Plugins
e Python Rule Engine Plugin Clients
e Storage Tiering Rule Engine Plugin e Python iRODS Client

Cloud Browser

e Auditing (AMQP) Rule Engine Plugin
e Update Collection Mtime Rule Engine Plugin Metalnx
NFSRODS

Automated Ingest Framework

e S3 Resource Plugin

e GSI Authentication Plugin

e Kerberos Authentication Plugin

e Curl Microservice Plugin

In The Last Year RODS

~/irods $ git shortlog --summary --numbered 4.1.11..4.1.12
27 Alan King
11 Terrell Russell
1 Justin James

~/irods $ git shortlog --summary --numbered 4.2.3..4-2-stable

39 Alan King
20 FKory Draughn
20 Terrell Russell
14 Andrew Kelly
6 Jason Coposky
5 Justin James
5 Zoey Greer
5 d-w-moore
3 Hao Xu
2 Felix A. Croes
2 Jkgill
1 Kyle Ferriter
1 Matt Watson

Ongoing Development Work RODS

e {RODS 4.2.7

e {RODS 4.3.0

e Automated Ingest Capability
e Storage Tiering Capability

e [ndexing Capability

e Publishing Capability

e Python iRODS Client (PRC)

e Metalnx

e NFSRODS

e |ustre Integration

e NetCDF Extraction

e Ceph RADOS Resource Plugin
e Cacheless S3 Resource Plugin
e Multipart Transfer, v5 API

e Testing Infrastructure

Policy Advancement

Steadily filling out the iRODS Data Management Model...

Auditing - 2017
Automated Ingest - 2018

Storage Tiering - 2018 Publishing

UNIFIED NAMESPACE

Indexing - 2019 . Indexing

Publishing - 2019 "’
Auditing Provenance
Provenance Avtorated :
Ingest Storage :
Integrity | Tiering i

O Compliance

Compliance

RODS

Working Groups 1RODS

Technology Working Group

e Goal: To keep everyone up to date, provide a forum for roadmap
discussion and collaboration opportunities

Metadata Templates Working Group

e Goal: To define a standardized process for the application and
management of metadata templates by the iRODS Server

NIEHS / Data Commons
Utrecht / Yoda
Maastricht / DataHub+
Arizona / CyVerse

Changelog Working Group (Upcoming...)

e Goal: To define a standardized log format from parallel file systems

= OpenSFS / Lustre

m |IBM / GPFS

m Panasas/ PanFS

m ThinkParQ / BeeGFS
m Red Hat / GlusterFS

Last Year and Next Year RODS

e New Libraries
= Kory Draughn

e jrodsDelayServer and Intermediate Replicas
= Alan King

e Build and Test
= Jaspreet Gill

New Libraries, Oh My!

Goal: Provide standardized interfaces that simplify common iRODS tasks

Six new libraries (so far):

iRODS Query Iterator
= Abstracts the GenQuery APl making it very easy to fetch information from the catalog

e iRODS Thread Pool
e jRODS Connection Pool

= Built with iRODS Thread Pool

iRODS Filesystem (experimental)

= |mplements the ISO C++17 Standard Filesystem Interface for iRODS
iRODS 10Streams (experimental)

= Provides standardized interfaces and facilities for reading/writing data objects using
different transport protocols (e.g. TCP, UDT, RDMA)

iRODS Query Processor
= Built with iRODS Query Iterator and iRODS Thread Pool

Benefits:

Usable in client-side and server-side code

Developers can accomplish more with less code

Developers introduce fewer bugs

Developers can focus on the objective they want to accomplish
Makes fixing bugs easier

Originally planned for 4.3.0.

Backported to 4.2.5 and 4.2.6 due to their ease of use and immediate impact.

RODS

RODS

irodsReServer -> irodsDelayServer

Old irodsReServer (pre-4.2.5)

e Fork-exec model for synchronous work distribution
m Maximum of 256 rules processed per wake-up
m Rules to be run later may block other rules
m Long-running rules may block entire RE server process

New irodsReServer (4.2.5+)

e Rebuilt with iRODS Query Iterator, Thread Pool, and Connection Pool
e Single-Producer/Multi-Consumer

m Uses query iterator to page over results
m Limits query to rules ready to execute
m Rules execute asynchronously using in-memory queue and thread pool

Rename to irodsDelayServer (4.3.0)

e iRODS Query Processor, distributed rule execution, ...

RODS

The Missing Link: Intermediate Replicas

Intermediate replica

e Replica is registered in ICAT, but data is not yet at rest
e Indicated with ?' via ils

Putting a data object into iRODS

® Register all required replicas (per voting) as intermediate before any data movement
® Finalize info in ICAT upon transfer completion

Intermediate state of all replicas - an iput to a replication resource with 3 leaves
$ ils -1
/tempZone/home/rods:
rods 0 repl;ufsO 0 2019-04-08.15:38 ? foo
rods 1 repl;ufsl 0 2019-04-08.15:38 ? foo
rods 2 repl;ufs2 0 2019-04-08.15:38 ? foo
After initial put is complete and before synchronous replication has completed
$ ils -1
/tempZone/home/rods:
rods 0 repl;ufsO 12345 2019-04-08.15:38 & foo
rods 1 repl;ufsl 0 2019-04-08.15:38 ? foo
rods 2 repl;ufs2 0 2019-04-08.15:38 ? foo
After replication has succeeded
$ ils -1
/tempZone/home/rods:
rods 0 repl;ufsO 12345 2019-04-08.15:38 & foo
rods 1 repl;ufsl 12345 2019-04-08.15:38 & foo
rods 2 repl;ufs2 12345 2019-04-08.15:38 & foo
Stale replicas will now be indicated with 'X’
$ ils -1
/tempZone/home/rods:
rods 0 rescl 54321 2019-04-08.15:38 & bar

rods 1 resc2 12345 2019-04-08.15:38 X bar

IRODS Build and Test - History 1RODS

July 2011
® Python — Node.js — RabbitMQ — Celery — Eucalyptus
October 2012

® Python — Node.js — ssh — OpenStack

January 2013

® Hudson — Python — OpenStack

October 2013

® Hudson — Python — vSphere long-running VMs
Spring 2015

® Jenkins — Python — Ansible — zone_bundles — vSphere dynamic VMs
Spring 2017

® Moved iRODS build/test logic from Ansible to python modules (per-repository)
® Consolidated to two parameterized Jenkins jobs

11

IRODS Build and Test - 2018 Promises

e |ncrease coverage (more plugins in Cl)

e Move pipeline scripts to GitHub (no logic in Jenkins)

e Address inconsistency (false reds / pyvmomi errors)

e Containerize Jenkins (easier to test / update / redeploy)

Possibly move from VMs to containers (speed / fewer moving parts)

RODS

12

RODS

IRODS Build and Test - Reality

e Everything would
need a custom

pipeline and logic

e Need externalized
infrastructure for

some of the tests

13

iRODS Build and Test - 2019 Architecture RODS

e Dockerized Jenkins

Build OS Images

B EE

Build iRODS Packages

Deploy and Test

e All configuration and setup in git

e Launches sibling Docker containers

= Build OS Images

= Build iRODS Packages

= Deploy and Test

o core, plugins, topology, federation

e Development is same as production

iIRODS Build and Test - Demo

OS | Database Containers Total
Core 2 1 2 test suites 4
Plugins 2 1 2 plugins (1 suite each) 4
Federation 2 1 2 providers (1 suite each) 4
Topology 2 1 4 (1 provider + 3 consumers) 8
TOTAL 20

e An additional DB would increase this test run by 20 containers (8+8+8+16 =40)

e Dockerized equivalent of the current 4-2-stable release process:

= 3OS, 3 Databases, 31 test suites, 8 Plugins

o 3x3x31=279 core containers

o 3x3x8=72plugin containers

o 3 x3x2xFederation subset =? containers

o 3x3x4xTopology subset =? containers

RODS

15

iIRODS Build and Test - Future

Make iRODS Jenkins publicly accessible
Investigate scaling up
Increase coverage

Approachable for community developers

s Confidence

= Acceptance Criteria

RODS

16

4.3.0 Update

Checksums moving down into resource plugins

JSON configuration/schema consolidation

e Use |latest releases of irods-externals

e Logging overhaul

RODS

17

4.3.0 Logging Update

Today

e Quiet for well-behaved systems

Inconsistent formatting
Incomplete (syslog support)
Not very helpful in tracking a root cause for errors

Not very helpful when multiple servers are involved

Design Goals

e Reduce code - Leverage an existing logging library (spdlog, etc.)

e Enable admins to easily capture, process, and analyze activity

e Consistent formatting

e Easily track errors across multiple servers (hostname, timestamp, PID, plugin, etc.)

e Tie into existing infrastructure

e Provide more options for controlling output

Local Files Remote --stdout
(rsyslog) (rsyslog)
Packaged default centralized Docker-friendly
logging
Non-Package probably probably HPC and
Install n/a n/a development

RODS

18

Policy Composition iRODS

With the new libraries, we can rewrite 90% of the internals, and then fix
the things that depend on them later, with little expectation of regression,
because the interfaces remain the same.

Internally

e We will have a new API... but not really
¢ |nstead, we stepped back and built good tools

= Allows us to refactor and go faster without breaking the 4.x API
= This has turned out to be more powerful than expected

Externally

* |t's a good story, the ability to compose policy into capabilities

e Can build smaller pieces of functionality which can be composed to
help solve larger problems

e We don't have to worry about side effects

Continuation within the Rule Engine Plugin Framework allows
administrators to break apart monolithic PEP implementations into
reusable components.

19

Big Picture

Core

* 4.3.0 - Harden and Polish
e 5.0.0 - Simplify API, Drop federation with 3.x

Clients

e GUIs (Metalnx, et al.)

* Onboarding and Syncing (Automated Ingest)

* File System Integration (NFSRODS / CIFSRODS)
* iRODS Console (alongside existing iCommands)

Continue building out policy components (Capabilities)

We want installation and management of iRODS to become
about policy design, composition, and configuration.

Please share your:

® use cases

® pain points

* hopes and dreams

RODS

20

Open Source Community Engagement 1RODS

Get Involved

e Working Groups

GitHub Issues

Pull Requests

Chat List

Consortium Membership

Tell Others

e Publish, Cite, Advocate, Refer

21

