
Providing validated, templated and richer metadata
using a bidirectional conversion between JSON and

iRODS AVUs
J. Paul van Schayck

MUMC+ DataHub
P. Debyelaan 25,
Maastricht, The

Netherlands
p.vanschayck@maastrichtuniversity.nl

Ton Smeele
Utrecht University

ITS/RDM
Heidelberglaan 8,

Utrecht, The Netherlands
a.p.m.smeele@uu.nl

Daniël Theunissen
MUMC+ DataHub
P. Debyelaan 25,
Maastricht, The

Netherlands
d.theunissen@maastrichtuniversity.nl

Lazlo Westerhof
Utrecht University

ITS/RDM
Heidelberglaan 8,

Utrecht, The Netherlands
l.r.westerhof@uu.nl

ABSTRACT

A frequently recurring question in research data management is to structure metadata according to a standard and

to provide the corresponding user interface to it. This has only become more urgent since the introduction of the

FAIR principles which state that metadata should use controlled vocabularies and meet community standards.

The iRODS data grid technology is well positioned as a core layer within an infrastructure to manage research data.

One of its strengths is the ability to attach any number of attribute, value, unit (AVU) triples as metadata to any

iRODS object. This makes iRODS adaptable to very diverse use cases in research data management. However, the

challenge of working with more structured metadata is not being addressed by the default capabilities of iRODS. Our

aim is to develop a new method for storing richer, templated and validated metadata in AVUs.

JSON is a popular, flexible and easy to use format for serializing (nested) data, while maintaining human and developer

readability. Furthermore, a JSON Schema can be used to validate a JSON structure and it can also be used to obtain

a dynamically generated form on the basis of this schema. This combination of functionalities makes it an excellent

format for metadata. We have therefore designed and implemented a bidirectional conversion between JSON and

AVUs. The conversion method has been implemented as Python iRODS rules that allow to set and retrieve AVU

metadata on an iRODS object using a JSON structure. Optionally, a policy can be installed to validate metadata

entry and updates against the JSON Schema that governs the object.

With this work we provide other iRODS developers with a generic method for conversion between JSON and AVUs.

We are encouraging others to use the conversion method in their deployments.

Keywords

Metadata, AVUs, JSON, conversion, validation, presentation

INTRODUCTION

Over recent years there has been an increasingly urgent call for the practice of open science [1]. Driven by the

core values in research of transparency and reproducibility, the sharing of research data has become a hot topic.

iRODS UGM 2019 June 25-28, 2019, Utrecht, Netherlands

1

Additional reasons for sharing research data are to better leverage investments in research by promoting reuse and

making those data that can be considered public assets, available to the public [2]. To facilitate this accountability

and reuse of research data, the Findable, Accessible, Interoperable and Reusable (FAIR) principles of research data

have been introduced and broadly taken up [3]. Briefly, the FAIR principles suggest for research data to be globally

and uniquely identifiable, and associated with searchable metadata (”Findable”); these identifiers should point to

(meta)data using an open protocol (”Accessible”) and that this data uses a formal representation language using

widely applicable ontologies (”Interoperable”); finally, data should be provided with cross-references, provenance

and license information (”Reusable”). Furthermore, the FAIR principles state that all this should be provided in

both human and machine-readable form to facilitate automated pipelines and the increasing need for automated

analysis and large-scale data research. However, the FAIR guidelines did not define any form of implementation

recommendations for these principles.

The iRODS data grid technology is well-positioned as a core layer within an infrastructure to manage research

data [4]. iRODS features support for preservation properties that are important for research data management

such as authenticity, integrity and chain of custody. Most of these properties are met using metadata to annotate

data objects and collections. Within iRODS, a basic building block for managing metadata is the AVU, short for

Attribute-Value-Unit. The name ”AVU” refers to its compound structure: It consists of three string-typed fields

that as a triple represent a single metadata property of the data. While typically more than one AVU is needed to

communicate and to document properties of research data1, currently the iRODS support for AVU composition is

somewhat limited. Microservices operate either on a single AVU or on an attribute-value map structure that does

not allow a unit component to be specified. Attributes with multiple values, nested structures and atomic operations

on a composition of AVUs are not supported. There is also no way to specify a template or structure that AVUs

associated to an object should adhere to. These limitations may hinder the implementation of the FAIR principles

or could lead to ad hoc solutions that are not transferable to other systems.

In contrast, many applications have adopted the data interchange standard JavaScript Object Notation (JSON) to

efficiently exchange and operate on composed data structures [5]. JSON is lightweight and can be used across many

programming languages. JSON data structures consist of an unordered collection of name/value pairs referred to

as an object. Values are primitive data types, or an ordered list of values, or another JSON object. To improve

interoperability, in 2017 IETF has published a more restrictive version of the JSON standard [6]. For instance,

this version requires the name of name/value pairs to be unique, so that programming languages can conveniently

implement JSON using map constructs.

JSON can be used to serialize arbitrary metadata, resulting in an equally arbitrary set of AVUs. For the purpose

of adhering to the FAIR principles however, we seek to restrict the metadata that documents research data to a

well-defined set of composed, related and consistent properties. The semantics of this metadata structure can be

modeled as a template. Such a template can be applied to validate operations that attempt to modify any of the

AVUs within the namespace of the template.

We propose to use JSON Schema as a technique to represent a metadata template within the context of iRODS. The

metadata template will act on a composition of AVUs that is represented by a JSON data structure. JSON Schema

is a draft internet standard that aims to define the structure and content of JSON formatted data [7]. Using a JSON

Schema definition, applications such as iRODS can validate and interact with instances of JSON formatted data.

The application of a JSON Schema based template does not need to be limited to iRODS server-side validation.

Figure 1 shows how client applications can opt to use the same JSON Schema in a presentation layer to dynamically

render forms that facilitate data entry of metadata. For instance the React2 component react-jsonschema-form3 is

1see for instance the DataCite specification at https://schema.datacite.org/
2see https://reactjs.org
3see https://github.com/rjsf-team/react-jsonschema-form

2

Figure 1. Overview of the schematic layers between JSON, AVUs, JSON-schema and its process in conversion,

validation and presentation.

used by Utrecht University, The Netherlands to render metadata entry forms in its data management application

Yoda [8]. DataHub at MUMC+ and Maastricht University, The Netherlands seeks to implement a similar solution

based on the CEDAR Workbench [9]. DataHub’s use case is focused on semantically linked (meta)data. Therefore

not only should the JSON structure be governed by a JSON Schema, in addition its vocabulary and structure must

conform to the W3C JSON-LD recommendation [10].

Hence our research can be applied on three levels. At the foundation level, a conversion method supports the use

of JSON to manage arbitrary compositions of AVUs in iRODS and to exchange these compositions efficiently with

client applications (Methods section). The optional second level validates the exchanged JSON against a metadata

template defined in JSON Schema. Both the first and second levels are implemented in the iRODS server (Results

section). A third level can optionally be implemented as part of a client application. It uses the (same) metadata

template for dynamic form-based user interactions. In the Discussion section, the main advantages and disadvantages

we found using the proposed methods are discussed. Finally, the research results are summarized and an outlook is

provided in the Conclusion section.

METHODS
Bidirectional conversion between JSON and AVU structures

We intend to represent a set of iRODS AVUs as a JSON structure and vice versa and use the serialized data in

communications between the iRODS server and client applications.

Design goals

Before creating the conversion method we set five design goals.

1. The conversion method must be a bijective function to ensure lossless conversions between JSON and AVU

structures in both directions. Any JSON structure that is compliant with the JSON specification should be

supported. The method should provide support for Unicode characters, nested structures, and ordered lists.

2. It must be easy to identify corresponding JSON objects and AVU attributes. This means that, especially for

simple JSON structures, it should be trivial to retrieve a JSON element from the AVUs without first back-

converting the JSON.

3

3. The conversion method should be lean and efficient. We seek to avoid an explosion in the number of AVUs as

a result of representing a nested JSON structure.

4. The method should be compatible with existing use cases that operate directly on AVUs.

5. The conversion method should be compatible with JSON-LD use cases.

Conversion method specifications

Using the design goals set as requirements we arrived, over several iterations, at a working design for the conversion.

An example JSON structure and its converted counterpart in AVUs is listed in Table 1. This example will be used

to explain how the conversion method works. Further examples can be found in the online repository4.

Table 1. Example of a JSON structure and its converted counterpart in AVUs.

{

"title": "Hello World!",

"parameters": {

"size" : 42,

"readOnly" : false

},

"authors" : ["Foo", "Bar"],

"references": [

{

"title": "The Rule Engine",

"doi": "1234.5678"

}

]

}

Representation in JSON

Attribute Value Unit

title Hello World! root_0_s

parameters o1 root_0_o1

size 42 root_1_n

readOnly False root_1_b

authors Foo root_0_s#0

authors Bar root_0_s#1

references o2 root_0_o2#0

title The Rule Engine root_2_s

doi 1234.5678 root_2_s

Representation in AVUs

The proposed conversion method repurposes the unit field of the AVU to encode JSON variable type and structure

information. This also reduces the chance of collisions with existing AVUs that presumably have an empty unit field.

Currently, nearly all the iRODS microservices that facilitate AVU operations, for example msiAssociateKeyValue-

PairsToObj, do not allow rule developers to specify content for the unit field. As a result of this limitation, the unit

component of the AVU is hardly ever used at the time of writing.

The AVU unit field comprises of four components, separated by an underscore character, except for the last component

where a hash is used. The first component indicates a namespace carried by all the AVUs that belong to this set.

Conversion operations will only affect AVUs that are part of the selected namespace. In addition, it facilitates that

iRODS objects are annotated with multiple JSON structures, each identified by their own namespace. In example

Table 1 the namespace is root.

The second component is an object sequence number that keeps track of AVUs that are part of the same JSON object.

The top level JSON object is assigned sequence number ”0”. In the example this includes title, parameters, authors

and references. Note that the element parameters holds a nested object as its value. The next sequence number

”1” is assigned to this nested object and note the sequence number in its (otherwise unused) AVU value component,

prefixed by the character o. All elements of the nested object, in this example size and readonly, have the object

sequence number ”1” in their unit field.

4see https://github.com/MaastrichtUniversity/irods avu json

4

An important design goal of the conversion method is the support of different variable types within JSON. AVUs

only allow string values, while JSON supports various primitive types. The third component of the AVU unit field

is used to indicate the JSON type of the value. See table 2 for an overview of the supported types. A special case is

the empty array type that indicates the presence of an array without any members. To achieve a lean conversion,

we only create AVUs to represent members of an array. We have to make an exception for an empty array, which

otherwise would not have any AVU representation at all. Without this provision, a later conversion from AVU back

to JSON would not be able to recreate the empty array.

Type AVU unit-type AVU value Remarks

string s The literal string

object o + object_id o + object_id The AVU value field is not used for conversion

boolean b "True" or "False"

number n String value of float or int

null z "." AVUs do not allow empty values

empty string e "." AVUs do not allow empty values

empty array a "." For convenience during conversion. See text.

Table 2. Overview of JSON variable types and their corresponding type string.

The fourth, optional component of the AVU unit field is used to denote an ordered index of the element. This

component is separated from its predecessor using a hash character #. The JSON specification includes the array

type. This is an ordered list of elements of any type. As AVUs are unordered, the last component of the unit field

denotes the array index to maintain order in arrays.

Summarizing, the AVU unit field has been used for the following purposes: 1. defining the JSON namespace, 2.

the object sequence number, 3. the value type and 4. the array index. A regular expression for capturing these

components of the unit field is shown in Listing 1.

^([a-zA-Z0-9_])+_([0-9]+)_([osbanze])((?<=o)[0-9]+)?((?:#[0-9]+?)*)

Listing 1. A regular expression to parse the components of the unit field

Validation of JSON structure using a JSON Schema template

The conversion method discussed above allows client applications to store JSON structures efficiently within the

iRODS server. This method is agnostic to the structure and the semantics of the metadata that is exchanged. For

some use cases this may suffice. Many use cases however require that metadata stored or exchanged is compliant

with a certain standard. We will now propose a validation method to fulfill this need.

Design goals

The validation method needs to meet three design goals.

1. It must be able to assess that a stored or exchanged set of metadata meets predefined quality levels with respect

to structure and semantics as typically documented in metadata standard. The metadata schema can vary per

iRODS object. For instance, objects that belong to a data set related to the Geosciences may require geospatial

location annotations whereas objects related to History disciplines may depend on chronological classification

metadata.

5

2. It should also be possible to annotate a single object with multiple disjunct sets of metadata. The metadata

template can vary per set of metadata.

3. In line with the conversion method, the validation method should again be compatible with existing use cases

that operate directly on individual AVUs.

Validation method specifications

For the purpose of validation, we shall consider sets of metadata that annotate an iRODS object rather than individual

AVUs. These sets are easily identified by their namespace identifier which is incorporated in the unit component of

the AVU. This makes the validation compatible with existing use cases as AVUs without a namespace will not be

affected by the validation and protection policies.

We select the draft internet standard JSON Schema to specify a metadata template used to validate sets of meta-

data [7]. JSON Schema conveniently supports the description of quality properties of individual metadata elements

as well as qualities that span across elements, for instance dependency relationships. Incoming metadata will be in

JSON representation and can be validated directly against a template. An example of the resulting schema is shown

in Listing 2.

{ "$id": "http://example.com/myschema.json",

"$schema": "http://json-schema.org/schema#",

"type": "object",

"additionalProperties": false,

"properties": {

"title": { "type": "string" },

"parameters": {

"type": "object",

"additionalProperties": false,

"properties": {

"size": { "type": "number" },

"readOnly": { "type": "boolean" }

}},

"authors": {

"type": "array",

"items": { "type": "string" }

},

"references": {

"type": "array",

"items": {

"type": "object",

"additionalProperties": false,

"properties": {

"title": { "type": "string" },

"doi": { "type": "string" }

}}}}}

Listing 2. JSON schema that corresponds to the JSON structure of Table 1.

RESULTS

Conversion method implementation

The implementation has been developed for iRODS version 4.2.x [11]. Since iRODS 4.2 does not expose any

microservices to modify the unit field of an AVU triple, custom iRODS microservices have been developed. The

6

conversion scheme has been developed as Python 2.7 and Python 3 module5 named irods_avu_json. The outcome

of the conversion of the example JSON is shown in Table 1.

The irods_avu_json module has in itself no interaction with or dependency on iRODS. To expose this functionality

within an iRODS installation we developed an iRODS ruleset 6. The developed ruleset uses the Python Rule Engine

recently released with iRODS 4.2 to import the irods avu json module.

An overview of the functionality being exposed by the ruleset is summarized in Table 3. All ruleset functions allow

specifying any iRODS object type (collection, object, user, group or resource) in a similar fashion as that iRODS

AVUs can be attached to any iRODS object. Furthermore, all functions also expect the JSON namespace to know

which AVU set to operate on.

Validation method implementation

The special $schema AVU denotes whenever a JSON Schema is attached to an iRODS object. We implemented two

ways for the JSON Schema to be specified in the value field of this AVU. (1) An (public or private) URI pointing

to the stored JSON schema. Optional caching of this URI has been implemented for performance reasons. (2) By

specifying ‘i:‘ in front of a path the JSON Schema is directly retrieved from within iRODS. Care must be taken

that this iRODS object is accessible for anyone allowed to modify the iRODS object to which the JSON Schema is

attached. Other methods for storing the JSON Schema could be devised and implemented at a later point.

Note that both the iRODS server and client applications can benefit from using the metadata template to check

the validity of any metadata that is being exchanged. Therefore a best practice is that the template reference is an

absolute URI and the metadata template itself is available at an internet-accessible location.

Validation of the JSON structure set by setJsonToObj() is triggered by the presence of the $schema attribute and

the same JSON namespace being present on the iRODS object. After retrieving the JSON Schema contents, the

validation is performed using the jsonschema Python module. Any validation errors will be passed back to the caller

of setJsonToObj(). To ensure only the full and validated JSON object is being stored first all existing AVUs of the

same JSON namespace are removed before the new one are set. This also ensures that any no longer existing parts

of the JSON object are removed during a setJsonToObj() operation.

The irods avu json-ruleset further implements validation of a JSON object by implementing a policy enforcement

points (PEPs), which are executed during the modification of AVUs. Whenever a $schema AVU is present on

the iRODS object and the AVU being modified is part of the same JSON namespace the operation is disallowed.

Modification of these AVUs can only be performed through setJsonToObj(). Because setJsonToObj() would also

trigger the same PEPs, the PEPs check whether execution is coming from setJsonToObj() and has been validated

against the JSON Schema. This is achieved through setting a Python global variable that is preserved in the rule

engine memory.

Function Description

setJsonToObj(object, objectType, jsonNs, json) Set a JSON to an iRODS object.

getJsonFromObj(object, objectType, jsonNs) Retrieve a JSON from an iRODS object.

getJsonSchemaFromObj(object, objectType, jsonSchema, jsonNs) Attach a JSON Schema to an iRODS objec.

setJsonSchemaToObj(object, objectType, jsonNs) Retrieve a JSON Schema from an iRODS object.

Table 3. Functionality exposed by the irods_avu_json-ruleset

5see https://github.com/MaastrichtUniversity/irods avu json
6see https://github.com/MaastrichtUniversity/irods avu json-ruleset

7

DISCUSSION

We successfully used the conversion method and the accompanying validation method in several pilot use cases. We

found several limitations and problems with the current implementation of the conversion and validation method.

The implementation of the conversion method currently requires all existing AVUs relating to a JSON namespace to

be removed before the new JSON is added. This may lead to performance issues with very large JSON structures.

Furthermore, the addition of all JSON related AVUs is not an atomic operation, meaning that collisions may occur

if multiple clients modify the same iRODS object at once.

The current implementation of validation uses the metadata PEPs to prevent any non-validated AVUs to be created

or modified. These PEPs directly wrap around their AVU modification microservice counterparts. Therefore a single

microservice call can, using a wildcard, operate on multiple AVUs. This means logic created for the PEPs is rather

convoluted. Furthermore, the chosen implementation of using a global Python variable to bypass the PEPs when

setJsonToObj() is being called breaks when the call for setJsonToObj() is initiated from a catalog consumer instead

of the catalog provider. This is because in that case of the call being initiated from the catalog consumer the global

variable is not in memory when the PEP is being executed on the catalog provider.

The performance issue, the non-atomic operation of the current conversion and the issue with the PEPs can all be

tackled by the introduction of a multi-AVU atomic core iRODS functionality. Such a microservice could handle the

entire operation of converting a JSON structure and its validation at once.

While not directly shown in this work the use of JSON Schema can be extended beyond the validation level that

is currently implemented. As mentioned before, an important feature is the auto-generation of web forms from the

JSON Schema. Several implementations of libraries capable of this functionality exists and we have explored several

of those. Furthermore, we envision that the use of JSON Schema for presentation can be further extended to for

example auto-generated search forms.

CONCLUSION

We set out to add a generic toolset to iRODS for handling richer, templated and validated metadata. We have

developed a bidirectional conversion between JSON and AVUs and validation provided through JSON Schema. Both

methods have been validated to meet their design goals via a proof of concept followed by an application-level

implementation. The methods developed provide new starting points for iRODS developers in facilitating research

data management that adheres to the FAIR principles.

ACKNOWLEDGMENTS

This work was sparked by the discussions in the iRODS metadata template working group and we would like to

thank them for their feedback. We would like to thank all members of the DataHub Maastricht team for their helpful

feedback and comments. Finally we thank Raimond Ravelli, Peter Peters and Michel Dumontier for their critical

reading of this manuscript.

REFERENCES

[1] M. R. Munafò, B. A. Nosek, D. V. Bishop, K. S. Button, C. D. Chambers, N. P. Du Sert, U. Simonsohn, E.-J.

Wagenmakers, J. J. Ware, and J. P. Ioannidis, “A manifesto for reproducible science,” Nature human behaviour,

vol. 1, no. 1, p. 0021, 2017.

[2] C. L. Borgman, Big Data, Little Data, No Data, Christine L. Borgman, The MIT Press, Cambridge, MA

(2015), Xxiv, 383 p. $70.00, ISBN: 978-0-262-02856-1. Elsevier, 2015.

[3] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W.

Boiten, L. B. da Silva Santos, P. E. Bourne, and others, “The FAIR Guiding Principles for scientific data

management and stewardship,” Scientific data, vol. 3, 2016.

8

[4] R. Moore, “Towards a theory of digital preservation,” International Journal of Digital Curation, vol. 3, no. 1,

2008.

[5] ECMA, “ECMA-404: The JSON Data Interchange Syntax,” Ecma International, vol. Standard, no. Second

edition, 2017.

[6] T. Bray, “IETF RFC 8259: The JavaScript Object Notation (JSON) Data Interchange Format,” Internet

Engineering Task Force (IETF), 2017.

[7] H. Andrews and A. Wright, “JSON Schema A Media Type for Describing JSON Documents,” Internet

Engineering Task Force (IETF), vol. Internet-Draft, Mar. 2018.

[8] T. Smeele and L. Westerhof, “Using iRODS to manage, share and publish research data: Yoda,” in Proceedings

of the 2018 iRODS User Group Meeting, (Durham NC), University of North Carolina, June 2018.

[9] R. S. Gonçalves, M. J. O’Connor, M. Mart́ınez-Romero, A. L. Egyedi, D. Willrett, J. Graybeal, and M. A.

Musen, “The CEDAR Workbench: an ontology-assisted environment for authoring metadata that describe

scientific experiments,” in International Semantic Web Conference, pp. 103–110, Springer, 2017.

[10] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “JSON-LD 1.0,” W3C Recommendation,

vol. 16, p. 41, 2014.

[11] A. Rajasekar, R. Moore, M. Wan, and W. Schroeder, “Policy-based Distributed Data Management Systems,”

Journal of Digital Information, vol. 11, no. 1, 2010.

9

