
Hard Links
Rule Engine Plugin

Hard Links
Rule Engine Plugin

June 9-12, 2020
iRODS User Group Meeting 2020

Virtual Event

Kory Draughn
Software Developer
iRODS Consortium

1



Hard Links - Why?

https://github.com/irods/irods_client_nfsrods/issues/57

Applications such as WinSCP implement some operations
using hard links.
Provide a generic solution for the community and future
projects (e.g. SMBRODS).

2

https://github.com/irods/irods_client_nfsrods/issues/57


What is a hard link?

In Linux, all file information is stored in an i-node.

 

A hard link is the mapping between a filename and an i-node.

 

i-nodes can have multiple hard links.

3



Hard Link representation in iRODS

A hard link has the following characteristics:

All affiliated data objects have different logical paths

All affiliated data objects point to the same replica

All affiliated data objects have the following AVU:

name: irods::hard_link

value: <UUID>

unit: <resource_id>

 

The (UUID, resource_id) tuple uniquely identifies a hard linked replica.

 

A data object can be a member of multiple hard link groups.

4



Policy Enforcement Points

pep_api_data_obj_rename_pre

pep_api_data_obj_trim_pre

pep_api_data_obj_unlink_pre

pep_api_data_obj_phymv_post

 

Maintaining the behavior of these operations required changes to the

Rule Engine Plugin Framework (REPF).

RULE_ENGINE_SKIP_OPERATION

Instructs the REPF to skip everything following the pre-PEP

Allows PEPs to override operations

"finally" PEPs are always triggered

5



Example: Creating a Hard Link

Generates new metadata and attaches it to each data object

Or, attaches the existing metadata to the newly registered data object

Copies all permissions from the source data object to the newly registered data object

6



Example: Renaming a Hard Link

Renaming or moving a hard linked data object only

updates the logical path of that data object

 

The physical path is never touched

7



Example: Unlinking a Hard Link

The data object being unlinked is a member of two hard link groups
 

The targeted data object is unregistered and all metadata is removed
from the remaining hard link members

 

The result is two data objects without any hard link metadata

8



Example: Trimming a Hard Link

Trimming a hard linked data object never unlinks it
 

Replica two is unregistered from the targeted data object
 

The metadata shared by the data objects pointing to replica two
is removed from both data objects.

$ itrim -n2

9



Example: Physically moving a hard linked replica

The units of the hard link metadata is updated to
reference the new resource id

 

All data objects in the hard link group are updated to
reflect the new location of the replica

$ iphymv -S <src_resource> -R <dst_resource>

10



Important things to know

Never modify the hard link metadata directly

Hard links do not track the first data object which referenced the replica

"post" PEPs are never triggered when handling a hard linked data object

"finally" PEPs are always triggered

11



Apparently, this is hard 😅!

Since release, we've identified that the plugin needs

some additional work to make it play well with others.

 

Some other rule engine plugins depend on the "post"

PEP to operate properly.

12



Questions?

Hard Links Resources:

Repo: 

RFC: 

https://github.com/irods/irods_rule_engine_plugin_hard_links

https://github.com/irods/irods_rfcs/blob/master/0005_hard_links.md

13

https://github.com/irods/irods_rule_engine_plugin_hard_links
https://github.com/irods/irods_rfcs/blob/master/0005_hard_links.md

