

Keeping Pace with Science The CyVerse Data Store in 2020 and the Future

Tony Edgin and Edwin Skidmore

iRODS UGM 2020

Data Store Statistics

- ★ 190 million data objects (9 PiB)
- ★ 80 million files (5 PiB) transferred in 2019
- ★ 200 thousand files (14 TiB) transferred daily
- ★ 80 thousand users
- ★ 50 concurrent user connections on average

File Transfer Performance Between CyVerse and Various Compute Platforms

10 GiB File Transfer	
Computation Platform	Throughput (MiB/s)
Texas Advanced Computing Center (TACC)	170
Jetstream	330
Amazon Web Services (AWS)	240
Google Cloud Platform (GCP)	260

What is the CyVerse Data Store?

- Offsite replication
- Optimization for accessing large sets of small files
- Event publishing
- Customer-driven extensions
 - Project-specific storage
 - Service integration (see Appendix)
 - Custom application integration (see Appendix)

Optimizing Access to Large Sets of Small Files

Use Case

Datasets for genome browser, e.g., *JBrowse* or *UCSC Genome Browser*

- thousands of kilobyte-sized files
- browsers are interactive,
 - loads files as needed
 - must be responsive, i.e., cannot take 20 seconds for each user request

CyVerse Solution

Set up a WebDAV server with a file cache

- apache web server with
 - **davrods** for iRODS access
 - **modfilecache** to cache files
- separate virtual hosts for anonymous and authenticated access
- warm cache for byte-range access
- 100x faster than iget

Project-Specific Storage

Use Case

A project wants to store its data in the Data Store.

- 100 TB of data
- replicas stored locally at two institutions

CyVerse Solution

- project provides institutional storage servers
- CyVerse configures storage servers
 - catalog consumers hosting storage resources
 - project uses replication resource
 - policy to ensure data localities
 - separate iRODS service account

Data Store of Tomorrow

Steps toward utopia

- Increase interoperability
- Reduce accidental complexity
 - See Your app makes me fat
- Shorten scientific analysis feedback loop

Upcoming Features

- Thematic Real-time Environmental Distributed Data Services (THREDDS) (see Appendix)
- Bring your own (BYO) infrastructure
 - BYO storage
 - BYO compute (later)
- Continuous analysis

User-Provided, S3-Compliant Storage

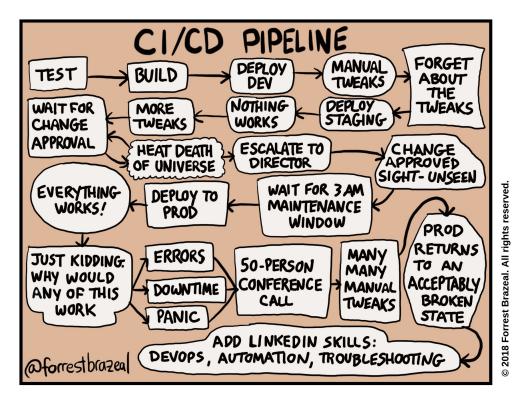
Use Case

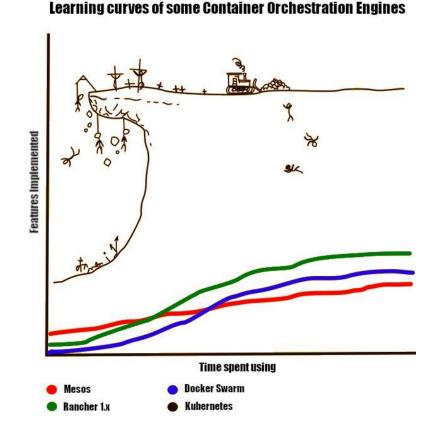
User wants to analyze their cloud data using CyVerse cyberinfrastructure.

- data hosted in an S3-compliant storage system, e.g. Google Cloud Storage
- moving them to Data Store is not feasible

CyVerse Solution

Use **iRODS S3 Resource Plugin** and **Filesystem Scanner.**


- cacheless, detached S3 resource for scalability
- Filesystem Scanner registers data in place
- Filesystem Scanner runs on cloud platform to avoid egress costs
- project owns cloud access credentials and responsible for accrued costs


More details in Appendix

CyVerse Continuous Analysis

Why "Continuous Analysis"?

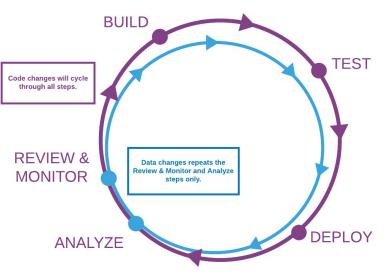
- "Reproducibility of computational workflows is automated using continuous analysis", CS Greene et al, Nature Biotechnology, June 2016 (http://dx.doi.org/10.1038/nbt.3780)
 - Used github and drone to demonstrate "continuous analysis", ci/cd for science
 - Code and data changes -> re-execute analysis and version everything
 - Authors admit limitations in dealing with data sets, though not impossible
- Scientists and researchers want event-driven analysis (data growth, sensors data, etc)
- Containers are becoming the de facto standard as units of reproducible compute
- Kubernetes is becoming the de facto standard for orchestrating containers
- Container orchestration and CI/CD technologies are difficult to use, esp for a scientist and mortals who don't know yaml (or json)

Why Continuous Analysis (cont.)

- Lessons learned
 - Jetstream/Atmosphere (multi-cloud, ad hoc interactive environments, allocations)
 - Containerized workflows
 - Data management
- Scientists need infrastructure to create, manage, and share in this emerging Kubernetes-native analyses in a managed fashion
- Complements the CyVerse's ecosystem, including Discovery Environment, Bisque, etc

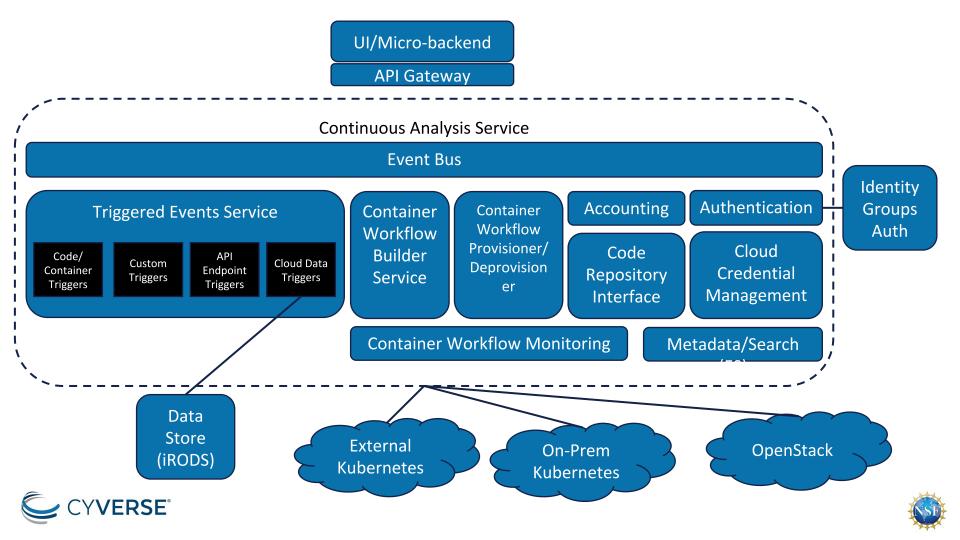
Example User Stories

- I want my analyses to launch every time my workflow changes, my data changes, new ML training data is available, or every hour
- I want my analyses to always be "available" and only be "charged" for the resources I actually use
- I want to launch or transfer my analyses onto Jetstream/AWS/GCP/IoT/my own project's servers
- I want to use Argo, Airflow, Snakemake, or Makeflow workflows with Kubernetes and scale as I define it

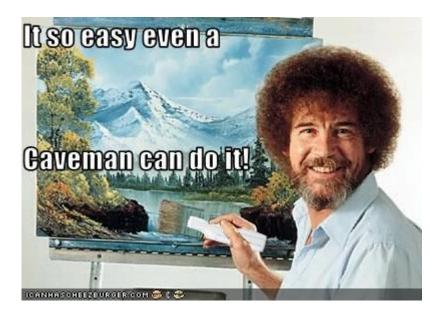


What is Continuous Analysis

Event-driven backend-as-a-service (BaaS) platform that will allow users to create, manage, deploy containerized analyses to any (kubernetes) cloud.


High level Capabilities:

- Multi-cloud (and iRODS integrated)
- Auto-scaling and Scale to zero
- Event-driven aka Continuous analysis (CI/CD for science)
 - o Data events, workflow events, periodic, external events
- Kubernetes/Cloud Native
 - Custom Resource Definition (CRD)
 - Supports k8s CRD workflows: standard k8s, Argo workflows
- Git for workflow persistence
- Support for federated identity (via keycloak)
- CyVerse-features: api, sharing/permissions, interop, etc



Current Status

- Currently, in development
 REST API is the initial focus (not so easy)
 - Command line interface (somewhat easier) 0
 - Easy to use UI Ο

• Limited release in Q4 2020

Questions?

Appendix

Service Integration

Use Case

A *Powered by CyVerse* service needs to access its users' data.

- not controlled by CyVerse, no admin access to data
- read-write access to its user data

CyVerse Solution

- service assigned rodsuser type iRODS account
- user opts into service through User Portal
- shared collection for user and service
 - owned by user in home collection
 - policy gives service write on contents
 - user has write permission, discourage delete, breaking service access

Example Application Integration

Use Case

<u>Sparc'd</u> is a desktop application supporting wildlife conservation created by Susan Malusa.

- manages sets of camera trap images
 - sizeable sets of small files
 - each set is tagged with metadata
 - supports sharing
 - images cannot be public, protect endangered species from poaching
- intended users are citizen scientists
 - volunteers, low frustration tolerance
 - require efficient uploads

CyVerse Solution

- project collection managed by Sparc'd creator who gets own permission on contents, enforced by policy
- "tar pipe" style upload
 - Sparc'd packs images in one or more tar files
 - asynchronous rule unpacks, registers images
- metadata attached in bulk
 - uploaded as CSV in each tar file
 - applied by image registration rule

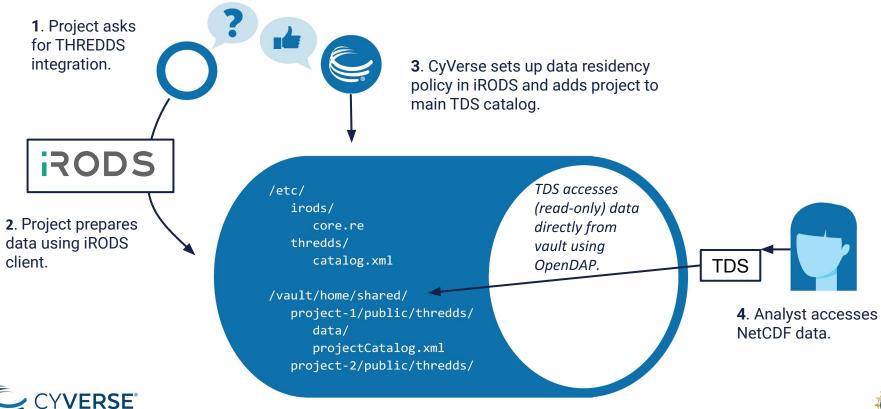
THREDDS Support for NetCDF Data Sets

Use Case

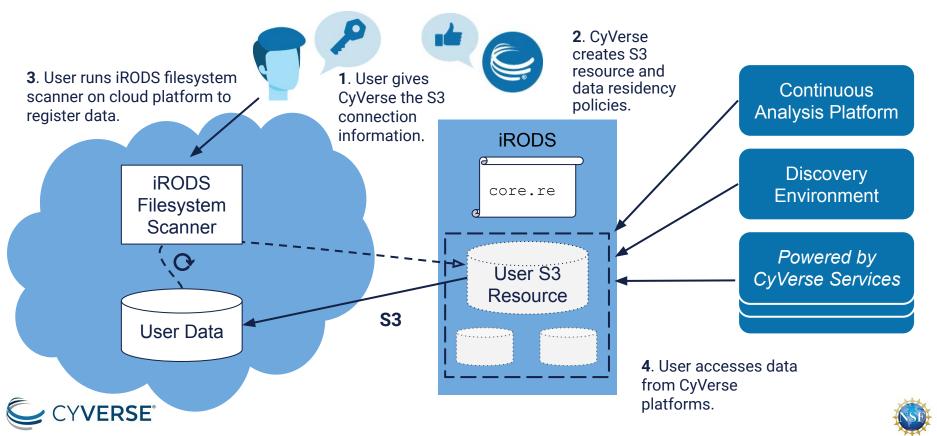
A project uses NetCDF files to store its public data sets.

- files are multi-gigabyte sized
- only portions of some files needed at a time

CyVerse Solution


THREDDS Data Server (**TDS**) provides a collection of web services for accessing various types of datasets including NetCDF.

- iRODS resource server and TDS share host
- TDS has direct, read-only access to iRODS vault
- THREDDS data description files in vault
- project manages served data through iRODS
- analyst accesses data through TDS



THREDDS Integration Process

User-Specific S3 Resource Creation Process

