
iRODS S3 Plugin
with Direct Streaming

iRODS S3 Plugin
with Direct Streaming

June 9-12, 2020
iRODS User Group Meeting 2020

Virtual Event

Justin James
Applications Engineer
iRODS Consortium

1



Existing Cacheless Limitations

While the existing cacheless plugin did not require a compound
resource with an archive and cache resource, it still used cache
files at the OS level.
 
Performance was limited by having to read an entire object
from S3, write to the local disk, and flush the object back to S3.
 
In some cases, the S3 is faster than the local disk which means
the performance is further limited by the performance of the
local disk.
 
The existing cacheless plugin does not support dstream.
 
Migrating to a streaming plugin that streams connections
directly from iRODS to the S3 backend and vice versa.

 
 

2



The Streaming S3 Plugin (Summary)

All reads and writes are handled by an s3_transport class which
extends irods::experimental::io::transport.
 
For normal gets and puts, no cache file is used.
 

When the RESOURCE_OP_READ operation is called, a read is called
to the dstream object.
 
When a RESOURCE_OP_WRITE operation is called this data is
streamed directly to S3 via the dstream object.
 

If parallel transfer is performed in iRODS, a multipart upload is
started and each transfer thread streams data directly to S3 for
its part.
 
If a single buffer write is being performed then multipart is not
used and data is streamed sequentially to S3.

3



The Streaming S3 Plugin (Summary)

In some circumstances a local cache file will still be used.  

We are no longer using S3FS libraries.  Both the cacheless and

cache versions use libs3.

 

The s3_transport  code is a proving ground for a couple of

libraries that have been added to the iRODS core:

Space limited circular buffer with notifications for threads

waiting to read and write.

The use of dstream and transport in iRODS.

4



The Streaming S3 Plugin (Parallel Put)

When an object is opened in write only mode with the truncate
flag set, a full file upload (PUT) is being performed.
 
Each thread creates the dstream and s3_transport objects when
it receives the first call to the RESOURCE_OP_WRITE operation.  
 
The very first s3_transport object opened calls
CreateMultipartUpload.
 
The RESOURCE_OP_WRITE operation simply forwards to
dstream.write() which calls s3_transport.send().
 
On the s3_transport.send() the data is written to a circular buffer.
 
The s3_transport object creates a thread to read the data from
the buffer and stream it to S3.

5



The Streaming S3 Plugin (Parallel Put)

6



Parallel Put (Circular Buffer)

The circular buffer is designed to limit the amount of memory that
is used when uploaded very large files.

If the circular buffer is full, the send() waits until it can complete
the write operation.
The thread which reads from the circular buffer and streams to
S3 will wait if the buffer is empty.
 

Each parallel transfer process/thread has its own circular buffer.
 
The size of the circular buffer is set in the resource context's
S3_CIRCULAR_BUFFER_SIZE parameter.

This size is in entries not bytes.
Each entry is equal to the size of the buffer sent to the plugin.
The maximum number of bytes than may be used per agent is
numberThreads * bufferSize * numberEntries.

7



The Streaming S3 Plugin (Parallel Get)

When an object is opened in read only mode the requested bytes

are simply read from the S3 object.

S3 allows random access reads for objects so a call to

RESOURCE_OP_READ translates directly to a request to

GetObject.

 

Each thread creates the dstream and s3_transport objects when

it receives the first call to the RESOURCE_OP_READ operation.

The RESOURCE_OP_READ operation simply forwards to

dstream.read() which calls s3_transport.receive().

 

The read operations are all synchronous.

8



The Streaming S3 Plugin (Parallel Get)

9



The Streaming S3 Plugin (Using a Cache File)

In some cases a cache file will still be necessary.  These include the
following.

 The object is opened in both read and write mode.
The object is opened in write-only mode but the object exists in
S3 and is not being truncated.
 

When the s3_transport object is created, it detects the need for a
cache file and the object is downloaded to cache (if it exists and not
truncated).
 
All reads and writes are performed directly on the cache file.
 
When the last close() is performed on the object, the cache file is
flushed to S3.

If the cache file is large enough, multiple upload threads are
used and a multipart upload is performed.

10



The Streaming S3 Plugin (Cache - First Open)

11



The Streaming S3 Plugin (Cache - Read/Write)

12



The Streaming S3 Plugin (Cache - Last Close)

13



Implementation Details (Performance)

We ran tests that compared the performance of uploads and downloads
among the following:

Cacheless S3 resource which used S3FS
Streaming S3 resource
Amazon AWS CLI Tool

 

Since iRODS generally uses 16 threads to transfer large files, the
maximum number of threads for the S3 API was increased to 16 threads.
 
The tests were run against a local MinIO server which is backed by a SSD
drive. This was to simulate a case with the network throughput and
storage latency is not a bottleneck so that we could compare the
performance improvement by not using a cache file.
 
Each upload and download was performed 6 times and the median time
value was used to measure the performance.
 
These same tests were performed with against an Amazon S3 backend. 
These results are not shown but the relative performance among the
three options were similar.

14



Implementation Details (Download Peformance)

15



Implementation Details (Upload Peformance)

16



Next Steps

Development is almost complete but the final implementation details

are being added.

Currently with the default iRODS settings, files between 32 MB and

80 MB are failing due to the S3 limitation on each multipart upload

part (except last) being at least 5 MB in size.

Increasing the

transfer_buffer_size_for_parallel_transfer_in_megabytes

configuration setting is a work-around for this.

This will be fixed and no configuration change will be necessary.

Implementing the RESOURCE_OP_READDIR operation.

17



Questions?

18


