
Technology UpdateTechnology Update

June 9-12, 2020
iRODS User Group Meeting 2020

Virtual Event

Terrell Russell, Ph.D.
@terrellrussell
Chief Technologist, iRODS Consortium

1

In The Last Year

iRODS Release Issues Closed

4.2.7 58

4.2.8 122

~/irods $ $ git shortlog --summary --numbered 4.2.6..4.2.8
 82 Kory Draughn
 36 Alan King
 13 Terrell Russell
 13 d-w-moore
 12 Jaspreet Gill
 10 Jason Coposky
 4 Justin James
 1 Ben Keller
 1 John Thiltges
 1 Matt Watson

2

In The Last Year

Plugins

Python Rule Engine Plugin
Storage Tiering Rule Engine Plugin
Auditing (AMQP) Rule Engine Plugin
Update Collection Mtime Rule Engine Plugin
S3 Resource Plugin
Kerberos Authentication Plugin
Curl Microservice Plugin
Hard Links Rule Engine Plugin
Indexing Rule Engine Plugin
Logical Quotas Rule Engine Plugin
Metadata Guard Rule Engine Plugin

Clients

Python iRODS Client
Metalnx
NFSRODS
Automated Ingest Framework
AWS Lambda for S3

3

Active Development Work

iRODS 4.2.9

iRODS 4.3.0

Metadata Templates Working Group

Authentication Working Group

Parallel Transfer Engine

Logical Locking

Policy Composition

Publishing Capability

NetCDF microservices

C++-based REST API

Metalnx and Indexing

NFSRODS

Testing Infrastructure
4

Working Groups

Technology Working Group
Goal: To keep everyone up to date, provide a forum for
roadmap discussion and collaboration opportunities

Metadata Templates Working Group

Goal: To define a standardized process for the application and
management of metadata templates by the iRODS Server

NIEHS / Data Commons
Utrecht / Yoda
Maastricht / DataHub+
Arizona / CyVerse

Authentication Working Group

Goal: To provide a more flexible authentication mechanism to
the iRODS Server.

SURF
NIEHS
Sanger
CyVerse
Utrecht 5

Philosophical Drivers

Plugin Architecture
core is generic - protocol, api, bookkeeping
plugins are specific
policy composition

Modern core libraries
standardized interfaces
refactor iRODS internals

ease of (re)use
fewer bugs

Replicas as first class entities

logical locking

Consolidation of data movement
dstreams all on 1247

6

Last Year and Next Year

Core Libraries
Kory Draughn

Logical Locking
Alan King

Python Query Facilities
Daniel Moore

Build and Test
Jaspreet Gill

7

Last Year's C++ Libraries

filesystem

server, plugins, icommands

iostreams

server, indexing, S3 resource, icommands

thread_pool

delay execution server, S3 resource

connection_pool

delay execution server

query

server, indexing, publishing, storage tiering

query_processor

delay execution server, storage tiering

Goal: Provide standardized interfaces that simplify common iRODS tasks

8

This Year's C++ Libraries: It's getting easier!
Nine new libraries:

key_value_proxy

Provides a map-like interface over an existing keyValuePair_t.

lifetime_manager

Guarantees that heap-allocated iRODS C structs are free'd at scope exit.

user group administration

Simplifies management of iRODS users and groups.

shared_memory_object

Simplifies access and management of shared memory.

with_durability

A convenient retry mechanism for functions and function-like objects.

query_builder

Enables query objects to be constructed lazily.

client_api_whitelist (server-side only)

An interface for managing and querying the client API whitelist.

scoped_privileged_client (server-side only)

Elevates the client's privileges for the duration of a scoped block.

scoped_client_identity (server-side only)

Changes the client's identity for the duration of a scoped block.
9

New API Plugin

Atomic Metadata Operations API Plugin
 Executes a list of metadata operations on a single object atomically.

Features:

Supports data objects, collections, users, and resources
Provides a future proof interface by accepting JSON as input
Supported by the iRODS Filesystem library

add_metadata(comm, path, container_holding_avus)
remove_metadata(comm, path, container_holding_avus)

Example JSON Input:

{
 "entity_name": "/tempZone/home/rods",
 "entity_type": "collection",
 "operations": [
 {
 "operation": "add",
 "attribute": "iRODS",
 "value": "is",
 "units": "awesome!"
 }, {
 "operation": "remove",
 "attribute": "ugm",
 "value": "2019"
 },
 // ... More Operations ...
]
}

10

Library / API Examples

Examples on using these libraries can be found at the

following repository:

Help us make them better!

https://github.com/irods/irods_api_examples

11

https://github.com/irods/irods_api_examples

Replicas vs. Data Objects: Why It Matters

Data Object: a logical representation of data that maps to one or more
physical instances (Replicas) of the data at rest in Storage Resources

Replica: an identical, physical copy of a Data Object

from training:

Operations which deal directly with replicas have completely separate
implementations for moving data. Operations dealing with data objects
still need access to replica information.

All of this has consistency and performance implications for moving
data. In reality, all of these operations should be and are identical:

Open replica, move data to replica, close replica

Solution: Make replicas a proper entity within iRODS

https://github.com/irods/irods_training/blob/master/beginner/irods_beginner_training_2019.pdf

12

https://github.com/irods/irods_training/blob/master/beginner/irods_beginner_training_2019.pdf

Data Movement and Replica Status

But replicas have their own problems...
- A replica's status is wrong the moment it is created
- Replicas are either good or stale, even if it is not at rest

Solution: Intermediate replica status for data not at rest

Replica status should always reflect what's in the catalog, there's
only one way to move data, and can be surfaced with a
standardized interface - great! And it's even mostly implemented!

...but what about concurrent operations on different replicas
represented by a single data object?

Solution: Logical locking

13

Logical Locking ()irods/irods#3848

Value ils Status Description

 0 X stale - data at rest may not match catalog

 1 & good - data at rest matches catalog

 2 ? intermediate - data is not at rest

 3 X read lock - allows open for read
- locks out open for write
- original status was stale

 4 & read lock - allows open for read
- locks out open for write
- original status was good

 5 ? write lock - locks out all opens for this replica
- when sibling replica marked intermediate

14

https://github.com/irods/irods/issues/3848

0(X): stale
1(&): good
2(?): intermediate
3(X): read lock (stale)
4(&): read lock (good)
5(?): write lock

Pathological Concurrent Operation Scenario

logical path: /tempZone/home/alice/foo

t0: 4 replicas; 3 good, 1 stale
t1: r3 opened for read; r3->3(X)
t2: r0 opened for read; r0->4(&)
t3: r1 opened for write; r1->2(?), r2->5(?)
t4: r3 closed/finalized; r3->5(?)
t5: r1 closed/finalized; r1->1(&), r2->0(X), r3->0(X)
t6: r0 closed/finalized; r0->0(X) 15

Python Rule Engine Plugin - Improved General Query

from genquery import Query

def data_name_like (rule_args, callback, rei):
 q = Query(callback,["COLL_NAME","DATA_NAME"],
 "DATA_NAME like '{}'".format(rule_args[1]))
 rule_args[:2] = q.first()

from genquery import row_iterator, AS_LIST
def data_name_like (rule_args, callback, rei):
 q = row_iterator(["COLL_NAME","DATA_NAME"],
 "DATA_NAME like '{}'".format(rule_args[1]),
 AS_LIST,
 callback)
 rule_args[:2] = [row for row in q] [0]

Original, more verbose syntax in 4.2.5:

With improvements from Chris Smeele (Utrecht) in 4.2.8:

General Query facility provided by /etc/irods/genquery.py

The example below has:

two return columns, "COLL_NAME" and "DATA_NAME"

where clause matching DATA_NAME "like" a passed string variable

16

Python iRODS Client - General Improvements

import irods.keywords as kw
from irods.models import DataObject
from datetime import timedelta, datetime
with iRODSSession(...) as session:
 q = session.query(DataObject.id) \
 .add_keyword(kw.ZONE_KW,'otherZone') \
 .filter(DataObject.modify_time > datetime.utcnow()-timedelta(seconds=3600))
 for row in q: print(row[DataObject.id])

from irods.column import In
from irods.models import User, Collection
query_results = [u[User.name] for u in session.query(User) \
 .filter(User.zone == 'myZone')
]
for coll in session.query(Collection.name) \
 .filter(In(Collection.owner_name,query_results)):
 print (coll)

"IN" operator

Queries can target federated zones

These new features are available in v0.8.3

17

Python iRODS Client - General Improvements

with iRODSSession(...) as session:
 x = [i for i in session.query(DataObject.id,Collection.name,DataObject.name)\
 .filter(Like(DataObjectMeta.name, 'criterionX_%'), DataObjectMeta.value < '4')\
 .filter(Like(DataObjectMeta.name, 'criterionY_%'), DataObjectMeta.value > '6')\
]
 print(x)

This query involves a single column multiple times:

 $ iquest "select DATA_ID, COLL_NAME, DATA_NAME where \
 META_DATA_ATTR_NAME like 'criterionX_%' and META_DATA_ATTR_VALUE < '4' and \
 META_DATA_ATTR_NAME like 'criterionY_%' and META_DATA_ATTR_VALUE > '6' "

The equivalent iquest can be seen here:

 $ imeta qu -d 'criterionX_a' '<' 4 and 'criterionY_b' '>' 6

imeta provides a simpler usage if the attribute names are known:

18

iRODS Build and Test - History

July 2011

Python → Node.js → RabbitMQ → Celery → Eucalyptus

October 2012

Python → Node.js → ssh → OpenStack

January 2013

Hudson → Python → OpenStack

October 2013

Hudson → Python → vSphere long-running VMs

Spring 2015

Jenkins → Python → Ansible → zone_bundles → vSphere dynamic VMs

Spring 2017

Moved iRODS build/test logic from Ansible to python modules (per-repository)

Consolidated to two parameterized Jenkins jobs

Fall 2019

Jenkins → Python → Docker 19

iRODS Build and Test - 2019 Architecture

Dockerized Jenkins

All configuration and setup in git

Launches sibling Docker containers

Build OS Images

Build iRODS Packages

Deploy and Test

core, plugins, topology, federation

Development is same as production

20

iRODS Build and Test - Progress

 Increase coverage (more plugins in CI)

 Move pipeline scripts to GitHub (no logic in Jenkins)

 Address inconsistency (false reds / pyvmomi errors)

 Containerize Jenkins (easier to test / update / redeploy)

 Move from VMs to containers (speed / fewer moving parts)

 Parallelize the jobs (speed)

 Continuous Integration (speed / integrity / accountability)

 Make iRODS Jenkins public (accountability / confidence)

21

iRODS Build and Test - 4.2.8 release cycle

iCAT database runs in its own container for every test

Serialized Workflow

Docker by default creates max 31 networks

GitHub rate limit exceeded exception

We are still learning about Docker

Operating Systems supported → Ubuntu 16, Ubuntu 18, and CentOS 7

Databases supported → PostgreSQL, MySQL/MariaDB, and Oracle

Number of Core Test Suites per OS per Database → 65

Number of Plugins Tested per OS per Database → 12

Topology → 4 combinations (Provider/Consumer, with/without SSL)

Upgrade Topology Test → 2 combinations (Provider/Consumer)

Federation → 1 combination (current vs. current)

22

iRODS Build and Test - Future

Make iRODS Jenkins publicly accessible

Investigate scaling out

Increase coverage

more tests

more plugins

more operating systems (SLES 15)

Conformance testing

Approachable for community developers

Confidence

Acceptance Criteria
23

Philosophy to Policy

With the new libraries and first class replicas, we can rewrite 90% of the
internals, and then fix the things that depend on them later, with little
expectation of regression, because the interfaces remain the same.

Internally

We will have a new API... but not really
Instead, we stepped back and built good tools

Allows us to refactor and go faster without breaking the 4.x API
This has turned out to be more powerful than originally expected

Externally

It's a good story, the ability to compose policy into capabilities
Can build smaller pieces of functionality which can be composed to
help solve larger problems
We don't have to worry about side effects

Continuation within the Rule Engine Plugin Framework allows
administrators to break apart monolithic policy implementations into
reusable components.

24

iRODS Data Management Model

25

Big Picture

Core

4.3.0 - Harden and Polish

Clients

GUIs (Metalnx, et al.)
Onboarding and Syncing (Automated Ingest)
File System Integration (NFSRODS / SMBRODS)
iRODS Console (alongside existing iCommands)

Continue building out policy components (Capabilities)

We want installation and management of iRODS to become
about policy design, composition, and configuration.

Please share your:

use cases
pain points
hopes and dreams

26

Open Source Community Engagement

Get Involved

Working Groups

GitHub Issues

Pull Requests

Chat List

Consortium Membership

Tell Others

Publish, Cite, Advocate, Refer

27

