iRODS at Bristol Myers Squibb Status and Prospects. Leveraging iRODS for scientific applications in Amazon AWS Cloud

Mohammad Shaikh | Oleg Moiseyenko

Scientific Cloud Computing

iRODS UGM, Jun 9-11, 2020

R&D: Delivering Innovative Medicines to Patients

*This non-GAAP amount excludes significant upfront and milestone payments for business development transactions and other specified R&D items. A reconciliation of GAAP to non-GAAP measures can be found on our website at <u>www.bms.com</u>. The GAAP amount is \$6.3B.

Data as of January, 2019

It's all about data, Big Data!

Lab data challenges

Data accessibility and sharing

- Silos between teams (organizational resistance)
- Generating insights in a timely manner, visualization and sharing

Networking, storage & computing power

• Efficient data exchanges, storage and processing

Replicating results

• Testing, validating, retesting,...

Data mining

Lack of good metadata annotation

Data standards & compliancy

• Different formats, data integration and validation

Data insights are only as good as the data that drives them

Typical data flow diagram

4. Applications request data via iRODS metadata catalog

iRODS base architecture

BMS Scientific Instruments

- Client asks for data
- Data requests goes to iRODS server
- Server looks up information in iCAT
- iCAT tells which iRODS server has data
- Data is retrieved from its physical location

BMS Scientists

iRODS in NGS data processing pipeline

iRODS in Discovery Imaging Platform

Flow Cytometry Data Flows

iRODS & Data Lake Integration

Roadmap to iRODS

Towards iRODS Data Farm

Processing Data at Scale

Using iRODS for managing petabytes of data in hundreds of millions of files on distributed storage resources spread across the country.

- Number of S3 buckets: **200+**
- Number of objects in S3: **800+ millions**
- Size of dataset: **10+ PB**
- Processing rate (regular data ingest): **5 millions objects per hour**

iRODS data ingest – standard approach

Near real time data ingest – AWS Lambda function

Updating iRODS Catalog with multiple S3 events

iRODS S3 Client AWS Lambda Function

This AWS Lambda function updates an iRODS Catalog with events that occur in one or more S3 buckets. Files created, renamed, or deleted in S3 appear quickly in iRODS.

- iRODS is assumed to have its associated S3 Storage Resource(s) configured with HOST_MODE
 = cacheless_attached
- If SQS is involved, it is assumed to be configured with **batch_size = 1**
- Handler: irods_client_aws_lambda_s3.lambda_handler
- Runtime: Python 3.7
- Environment Variables:
 - IRODS_COLLECTION_PREFIX : /tempZone/home/rods/lambda
 - IRODS_ENVIRONMENT_SSM_PARAMETER_NAME : irods_default_environment
 - IRODS_MULTIBUCKET_SUFFIX : _s3

iRODS S3 Client AWS Lambda Function

This AWS Lambda function updates an iRODS Catalog with events that occur in one or more S3 buckets. Files created, renamed, or deleted in S3 appear quickly in iRODS.

- You must configure your Lambda to trigger on all **ObjectCreated** and **ObjectRemoved** events for a connected S3 bucket.
- The connection information is stored in the AWS Systems Manager --> Parameter Store as a JSON object string.
- SSL Support
- This Lambda function can be configured to receive events from multiple sources at the same time.
- GitHub repository: <u>https://github.com/irods/irods_client_aws_lambda_s3</u>
- Release 1.0 date: May 12, 2020

Thank you

Acknowledgements

- BMS Cloud team
- iRODS support team
- Consortium members
- Conference papers
- Open source community

Mohammad Shaikh | Director | Scientific Computing Services | Cloud Computing & DevOps

100 Nassau Park Blvd, #300, Princeton, NJ 08540 Phone: 609.419.6352 Email: mohammad.shaikh@bms.com

Oleg Moiseyenko | Associate Director | Scientific Computing Services | Cloud Computing & DevOps

100 Nassau Park Blvd, #300, Princeton, NJ 08540 Phone: 609.419.6330 Email: oleg.moiseyenko@bms.com

