

iRODS
User Group Meeting 2020

Proceedings

© 2020 All rights reserved. Each article remains the property of the authors.

2

12TH ANNUAL CONFERENCE SUMMARY

The Virtual iRODS User Group Meeting of 2020 gathered together iRODS users, Consortium

members, and staff to discuss iRODS-enabled applications and discoveries, technologies developed

around iRODS, and future development and sustainability of iRODS and the iRODS Consortium.

The virtual four-day event was held from June 9th to 12th, hosted by the University of Arizona and the

iRODS Consortium, with over 220 people attending from 19 countries. Attendees and presenters

represented over 100 academic, governmental, and commercial institutions.

3

4

TALKS AND PAPERS

iRODS UGM 2020 Keynote

A Conversation With Your Data Platform

Nirav Merchant – CyVerse / University of Arizona

iRODS Consortium Update

Jason Coposky – iRODS Consortium

iRODS Technology Update

Terrell Russell. Kory Draughn, Alan King, Daniel Moore, Jaspreet Gill – iRODS Consortium

Yoda and the iRODS Python Rule Engine Plugin ……………………………………………… 11

Lazlo Westerhof, Chris Smeele – Utrecht University

Using JSON Schemas as metadata templates in iRODS ……………………………………… 13

Venustiano Soancatl Aguilar – University of Groningen

S3:TNG – iRODS S3 Resource Plugin with Direct Streaming ………………………………… 15

Justin James, Kory Draughn, Jason Coposky, Terrell Russell – iRODS Consortium

Parallel data migration between GPFS filesystems via the iRODS rule engine ……………… 25

Ilari Korhonen – KTH Royal Institute of Technology

5

Policy-Encapsulated Objects ……………………………………………………………………… 27

Arcot Rajasekar – University of North Carolina at Chapel Hill

Integration of iRODS with IBM Spectrum Archive Enterprise Edition – A flexible tiered

storage archiving solution ………………………………………………………………………… 29

Nils Haustein – IBM European Storage Competence Center

Mauro Tridici – Euro-Mediterranean Center on Climate Change (CMCC)

SmartFarm Data Management ………………………………………………………………… 37

Kieran Murphy – Agriculture Victoria

Data management in autonomous driving projects …………………………………………… 39

Marcin Stolarek, Radosław Rowicki, Kacper Abramczyk, Mateusz Rejkowicz – Aptiv

CyVerse Discovery Environment: Extensible Data Science workbench and data-centric

collaboration platform powered by iRODS …………………………………………………… 41

Sarah Roberts, Sriram Srinivasan, Nirav Merchant, Tina Lee – CyVerse / University of Arizona

iRODS and Federated Identity authentication: current limitations and perspective ……… 43

Claudio Cacciari, Stefan Wolfsheimer, Hylke Koers, Arthur Newton, Tasneem Rahaman-Khan,

Matthew Saum, Gerben Venekamp – SURF

The Past, Present and Future of iRODS at the Texas Advanced Computing Center ……… 45

Chris Jordan – The University of Texas at Austin

iRODS_CSharp ………………………………………………………………………………… 47

Reink Fidder, Jelle Teeuwissen – Utrecht University

Best Student Technology Award Winner

6

Using iRODS to build a research data management service in Flanders …………………… 49

Ingrid Barcena Roig – KU Leuven

Application of iRODS to NIEHS Data Management ………………………………………… 51

Mike Conway, Deep Patel – NIEHS / NIH

iRODS Client: NFSRODS 1.0 …………………………………………………………………… 53

Kory Draughn, Terrell Russell, Alek Mieczkowski, Jason Coposky – iRODS Consortium

Mike Conway – NIEHS / NIH

iRODS Rule Engine Plugin: Hard Links 4.2.8.0 ……………………………………………… 61

Kory Draughn, Terrell Russell – iRODS Consortium

Creating an iRODS zone with Terraform ……………………………………………………… 63

Brett Hartley – Wellcome Sanger Institute

Building a national Research Data Management (RDM) infrastructure with iRODS in the

Netherlands ……………………………………………………………………………………… 65

Saskia van Eeuwijk, Hylke Koers – SURF

iRODS at Bristol Myers Squibb: Status and Prospects. Leveraging iRODS for scientific

applications in Amazon AWS Cloud …………………………………………………………… 67

Mohammad Shaikh, Oleg Moiseyenko – Bristol Myers Squibb

Keeping Pace with Science: the CyVerse Data Store in 2020 and the Future ……………… 69

Tony Edgin, Edwin Skidmore – CyVerse / University of Arizona

7

iRODS Logical Quotas Policy Plugin ………………………………………………………… 71

Jonathon Anderson – University of Colorado Research Computing

Kory Draughn, Terrell Russell – iRODS Consortium

iRODS Policy Composition: Principles and Practice ………………………………………… 73

Jason Coposky, Terrell Russell – iRODS Consortium

iRODS Client: AWS Lambda Function for S3 1.0 …………………………………………… 75

Terrell Russell – iRODS Consortium

8

LIGHTNING TALKS

– iRODS / Globus Partnership Announcement

– Vas Vasiliadis – Globus

– Jason Coposky – iRODS Consortium

– Development Plan for iRODS Kubernetes Storage Driver

– Illyoung Choi – CyVerse / University of Arizona

– A Demo of irods/irods_demo

– Alan King – iRODS Consortium

– Upgrading iRODS from 4.1.12 to 4.2.7: Re-live the thrills and spills of an iRODS Administrator

– John Constable – Wellcome Sanger Institute

– Ansible Modules for iRODS using python-irodsclient

– John Xu – CyVerse / University of Arizona

– More Transport, Please!

– Kory Draughn – iRODS Consortium

– irods-fish

– Tony Edgin – CyVerse / University of Arizona

– Using iRODS as an entry point to VITAM for long-term preservation

– Samuel Viscapi – CINES

– CyVerse Continuous Analysis: Even a cave man can do it!

– Calvin McLean – CyVerse / University of Arizona

– The delay server rewrite: A tour of query_processor

– Alan King – iRODS Consortium

CLOSING REMARKS

Call to Action

– Nirav Merchant – CyVerse / University of Arizona

9

10

Yoda and the iRODS Python Rule Engine Plugin
Lazlo Westerhof

Utrecht University

Utrecht, Netherlands

l.r.westerhof@uu.nl

Chris Smeele

Utrecht University

Utrecht, Netherlands

c.j.smeele@uu.nl

ABSTRACT

At the UGM 2018, we presented Yoda, a system for reliable, long-term storing and archiving large amounts of

research data during all stages of a study. It facilitates researchers to describe, deposit, and publish research data in

compliance with the FAIR principles.

Yoda deploys iRODS as its core component, customized with more than 10,000 lines of iRODS rules. With the

release of the iRODS Python rule engine plugin, we sought to make use of the benefits it provides in areas of

reusability, ease of development, and availability of existing libraries.

To accomplish this we have rewritten most of our rules and developed several generic wrappers and reusable

utilities to make this easier. This is the story of our approach to developing Python rules and the challenges we faced

along the way.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

11

12

Using JSON Schemas as metadata templates in
iRODS

Venustiano Soancatl Aguilar

University of Groningen

Groningen, Netherlands

v.soancatl.aguilar@rug.nl

ABSTRACT

In this talk, we discuss the potential of JSON schemas as metadata templates. One of the main advantages of JSON

schemas is that they can be represented as strings. This feature is very convenient as strings can be stored in iRODS

as AVUs, in an elasticsearch database or in any other external database. Additionally, JSON schemas are supported

by programming languages such as python and java. This support makes it relatively straightforward to validate

both, the schemas and the JSON metadata against the schemas. Assuming that JSON schema templates are stored

somewhere else and can be accessed from iRODS, we have implemented irules to associate metadata templates with

iRODS objects, ingest metadata validated against templates, display template AVUs and inherited AVUs via the

command line interface. Finally, we discuss future plans regarding managing templates in our iRODS system.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

13

14

S3:TNG - iRODS S3 Resource Plugin
with Direct Streaming

Justin James
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

jjames@renci.org

Kory Draughn
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

korydraughn@renci.org

Jason Coposky
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

jasonc@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

unc@terrellrussell.com

ABSTRACT

The iRODS S3 storage resource plugin has become very important to the iRODS ecosystem. Many production

systems are now spanning local disk, local or remote object stores, and tape. Last year’s release of the cacheless S3

plugin enjoyed immediate uptake.

This year’s update shares the design and engineering underway for the iRODS S3 plugin to provide direct streaming

into and out of S3-compatible storage. This rewrite uses the new iRODS IOStreams library[1] and in-memory bu↵ering

to make e�cient multi-part transfers.

Keywords

iRODS, S3, AWS, streaming, multipart, data management

INTRODUCTION

iRODS has provided an interface to S3-compatible[2] storage since iRODS 2.2[3] through the compound resource

(with child resources designated in the roles of cache and archive). Last year, we introduced the work to provide

a ’cacheless’ connection to S3-compatible storage that did not require a compound resource as parent[4]. This was

better for configuration (fewer moving parts), performance (no additional replica needed), as well as for cost (no

additional replica needed).

This year’s progress revisits some remaining assumptions and addresses performance through direct streaming.

PRIOR LIMITATIONS AND MOTIVATION

While the existing cacheless plugin did not require a compound resource with an archive and cache resource, it still

used cache files at the OS level. Because the S3 multipart protocol is di↵erent from the parallel transport mechanism

in iRODS, the S3 plugin still collected the entire file ’locally’ from one protocol before sending it on its way using

the other protocol. This year’s work addresses this performance bottleneck, but not completely. Some scenarios still

require a local cache file.

Performance was also limited by having to read an entire object from S3, write to the local disk, and flush the object

back to S3. This required multiple trips to the local disk, both for read and write.

iRODS UGM 2020 June 9-12, 2020, Virtual
[Authors retain copyright.]

1

15

In some cluster cases, communicating with the S3 endpoint is faster than the communicating with the local disk

which means the performance is further limited by the performance of the local disk.

One last limitation of the cacheless S3 plugin is that it does not support the dstream interface directly.

Figure 1. Ongoing evolution of the iRODS S3 Plugin

This paper shares how the iRODS S3 Resource Plugin is migrating to a streaming plugin that streams connections

directly from iRODS to the S3 backend and vice versa with as few interactions with the local disk as possible.

IMPLEMENTATION

In the new streaming S3 plugin, all reads and writes are handled by an s3_transport class which extends

irods::experimental::io::transport.

As the primary goal is to remove the use of any local cache file, here we will discuss some di↵erent usage scenarios.

For normal gets and puts, no cache file is used. When the RESOURCE_OP_READ operation is called, a read is called

to the dstream object. When a RESOURCE_OP_WRITE operation is called, this data is streamed directly to S3 via the

dstream object. During this write, if a parallel transfer is performed in iRODS, a multipart upload is started to S3

and each transfer thread streams data directly to S3 for its part. If a single bu↵er write is being performed, then

multipart is not used and data is streamed sequentially to S3.

In some circumstances covered later, a local cache file will still be used.

The iRODS S3 plugin is no longer using the S3FS[5] libraries. Both the cacheless and cache versions use libs3[6]

directly which allows for more fine-grained control of the underlying transfer mechanisms.

The s3_transport code in this plugin is a proving ground for two new libraries that have been recently added to the

iRODS core. The first is a space-limited circular bu↵er[7] with notifications for threads waiting to read and write.

The other is the use of dstream within the data movement layer in iRODS.

PARALLEL PUT

When an iRODS object is opened in write only mode with the truncate flag set, a full file upload (PUT) is being

performed. This is the ’usual’ case for when files are put into iRODS.

Each thread creates the dstream and s3_transport objects when it receives the first call to the RESOURCE_OP_WRITE

operation (Figure 2). The very first s3_transport object that is opened calls the S3 function CreateMultipartUpload.

The RESOURCE_OP_WRITE operation simply forwards to dstream.write() which calls s3_transport.send(). On the

s3_transport.send(), the data is written to a per-thread, in-memory circular bu↵er. The s3_transport object

creates a thread to read the data from the bu↵er and stream it to S3.

2

16

Figure 2. Streaming Parallel PUT

Circular Buffer

The blocking circular bu↵er is designed to improve performance and limit the amount of memory that is used when

uploaded very large files. If the circular bu↵er is full, the s3_transport.send() waits until it can complete the write

operation. The thread which reads from the circular bu↵er and streams to S3 will wait if the bu↵er is empty.

Each parallel transfer process/thread has its own circular bu↵er.

The size of the circular bu↵er is set in the resource context’s S3_CIRCULAR_BUFFER_SIZE parameter. This size is in

entries, not bytes. Each entry is equal to the size of the bu↵er sent to the plugin. The maximum number of bytes

that may be used per iRODS Agent is numberThreads * bufferSize * numberEntries.

PARALLEL GET

When an object is opened in read-only mode (GET), the requested bytes are simply read from the S3 object. This

is the ’usual’ case for when files are retrieved from iRODS.

S3 allows random access reads for objects, so a call to RESOURCE_OP_READ translates directly to an S3 request to

GetObject (Figure 3). Each thread creates the dstream and s3_transport objects when it receives the first call to

the RESOURCE_OP_READ operation. The RESOURCE_OP_READ operation simply forwards to dstream.read() which calls

s3_transport.receive(). The read operations are all synchronous.

3

17

Figure 3. Streaming Parallel GET

CACHE FILE

In some cases, a local cache file will still be necessary. These include the following:

- The iRODS data object is opened in both read and write mode.

- The iRODS data object is opened in write-only mode but the object exists in S3 and is not being truncated.

When the s3_transport object is created, it detects any need for a cache file and the S3 object is downloaded to

cache (if it exists and not truncated) (Figure 4). All iRODS reads and writes are performed directly on the cache file

(Figure 5). When the last close() is performed on the iRODS data object, the cache file is flushed to S3 (Figure 6).

If the cache file is large enough, multiple upload threads are used and a multipart S3 upload is performed.

4

18

Figure 4. Streaming Cache Open

Figure 5. Streaming Cache Read / Write

5

19

Figure 6. Streaming Cache Close

PERFORMANCE

We ran a battery of tests that compared the performance of uploads and downloads among the following three

implementations:

- S3 Plugin w/ Streaming (2020)

- S3 Plugin w/ S3FS (Cacheless) (2019)

- Amazon AWS CLI Tool

Since iRODS generally uses 16 threads to transfer large files, the maximum number of threads for the S3 API was

increased to 16 threads.

The tests were run against a local MinIO[8] server backed by an SSD drive. This was to simulate a case where the

network throughput and storage latency is not a bottleneck so that we could compare the performance improvement

by not using a cache file. The chunk size was set to 64MB.

Each upload and download was performed 6 times and the median time value was used to measure the performance.

6

20

Download

Figure 7. Download Performance Comparison

128MB 256MB 512MB 1024MB 2048MB 4096MB

AWS S3 CLI 1.05 1.63 2.72 5.15 12.48 19.36

S3 Plugin w/ S3FS (2019) 0.56 0.76 1.57 3.45 9.05 16.48

S3 Plugin w/ Streaming (2020) 0.32 0.37 1.25 3.10 6.06 13.89

Table 1. Download times in seconds (median, n=6)

As seen in Figure 7 and Table 1, all three implementations were competitive with files under 1GB, but then the

Streaming S3 Plugin (2020) began to outdistance the other two. With file downloads between 1GB and 4GB, the

Streaming S3 Plugin (2020) consistently outperformed the S3FS implementation (2019) by about three seconds. The

AWS CLI Tool was an additional couple seconds slower than S3FS.

It is also clear from this graph that download performance is relatively linear as the downloaded file grows in size.

7

21

Upload

Figure 8. Upload Performance Comparison

128MB 256MB 512MB 1024MB 2048MB 4096MB

S3 Plugin w/ S3FS (2019) 2.06 2.88 5.16 9.83 18.66 53.28

AWS S3 CLI 1.21 1.73 2.96 5.43 10.19 26.48

S3 Plugin w/ Streaming (2020) 0.83 1.09 1.65 2.88 5.51 9.93

Table 2. Upload times in seconds (median, n=6)

The Streaming S3 Plugin (2020) came out ahead for the upload comparison as well (Figure 8 and Table 2). However,

the AWS CLI Tool came in second, with a trailing third for the S3FS implementation (2019) as the file sizes increased.

For 4GB files, the Streaming S3 Plugin was 2.5x faster than the AWS CLI Tool.

The Streaming S3 Plugin, most notably, maintains a linear performance profile for upload due to the circular bu↵ers

providing consistent memory usage throughout and helping to mitigate the di↵erences in storage medium performance

by moving any bottleneck to the network.

These same tests were performed against an Amazon S3 backend, including live public network latencies. The results

are not included here, but the relative performance among the three options remained.

8

22

FUTURE WORK

Development is almost complete but more testing and real-world usage will certainly bring new insights and opti-

mizations.

With the current default iRODS settings, files between 32 MB and 80 MB are failing due to the

S3 limitation on each multipart upload part (except the last) being at least 5 MB in size. Increasing the

transfer_buffer_size_for_parallel_transfer_in_megabytes configuration setting is a manual workaround for

this. This will be fixed and no configuration change will be necessary.

Additional work will also be required to implement the RESOURCE_OP_READDIR operation.

SUMMARY

The iRODS S3 Plugin has made a lot of progress in the last few years. It has moved from an archive class resource

under a compound resource, to providing cacheless operations, to now providing direct streaming access to S3-

compatible backends.

This progress has also increased its performance significantly. This year’s streaming plugin is now almost 30% faster

when downloading files than the AWS CLI Tool and 2.5x faster when uploading.

REFERENCES

[1] Draughn, Kory: iRODS IOStreams Library (2019). https://github.com/irods/irods/issues/4268

[2] Amazon S3 (2006) https://en.wikipedia.org/wiki/Amazon_S3

[3] Wan, Mike: Initial S3 File Driver commit (2009).

https://github.com/irods/irods-legacy/commit/2d204c14687340828483abecf8f73a8ea4dea944

[4] James, Justin; Russell, Terrell; Coposky, Jason; iRODS S3 Resource Plugin: Cacheless and Detached Mode

(2019)

https://irods.org/uploads/2019/James-iRODS-S3_Resource_Plugin_Cacheless_and_Detached-paper.pdf

[5] s3fs-fuse: FUSE-based file system backed by Amazon S3 https://github.com/s3fs-fuse/s3fs-fuse

[6] libs3 https://github.com/bji/libs3

[7] Circular Bu↵er https://en.wikipedia.org/wiki/Circular_buffer#References

[8] MinIO: High Performance Object Storage https://min.io/

9

23

24

Parallel data migration between GPFS filesystems via
the iRODS rule engine

Ilari Korhonen

KTH Royal Institute of Technology

Stockholm, Sweden

ilarik@kth.se

ABSTRACT

At the PDC Center for High Performance Computing at KTH, in collaboration with our colleagues at the

supercomputing center of Linköping University, we operate the iRODS-based section of the national research data

storage for Sweden. We have a heterogeneous, asymmetric data grid based on iRODS with several underlying

storage solutions and technologies. At PDC we have the performance tier of the system running on top of GPFS

filesystems. Our GPFS cluster alongside the filesystems it is hosting, are due for an upgrade - since we would like to

deploy the newest generation of GPFS (5.0.x) for its space efficiency and several other enhancements. For this we

prepared by initially building the cluster with two physical filesystems to accommodate the envisioned upgrade and

(online) data migrations. After the cluster has been upgraded to the latest software we will upgrade (reformat) the

on-disk GPFS filesystems one at a time, migrating the data online between the filesystems via iRODS. All data will

remain accessible at all times and users uninterrupted, not realizing their data objects have been migrated

underneath. At this moment the first step of this operation has been done, i.e. the other physical filesystem has been

drained of iRODS resources and those have been migrated to its pair. This was done via the asynchronous and

parallel rule execution of iRODS 4.2.x with a set of custom rules developed with the iRODS Consortium. This

enabled us to gain more parallelism of the system, not only with the parallel read/write performance of GPFS with

iRODS parallel streams but also the checksumming of the migrated data objects in parallel, jobs being launched

from the iRODS delay execution queue. The successes and challenges of this process are to be presented.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

25

26

Policy-Encapsulated Objects
Arcot Rajasekar

University of North Carolina at Chapel Hill

Chapel Hill, NC, USA

rajasekar@unc.edu

ABSTRACT

With increasing movement of data objects across distributed and remote storage data objects lose their policies that

were applied and used where they were generated, created or administered. When a file is moved from a local

storage to a remote storage, all such metadata including metadata about ownership, creation, modification audit trail

and security and permission information are not transferred. Moreover, all links to the original is lost and there is no

lineage captured or maintained and as the data object gets copied and moved across multiple storages and modified

at various stages the information about all these actions are not captured and is lost forever. Even policy-based data

management systems, such as iRODS, that instrument policy enforcement points within the data management

infrastructure and apply policies as computer actionable rules but do not control once the object is copied out of its

domain. We propose the concept of a policy encapsulated object (PEO) that encodes policies that govern the life-

cycle of a data object as part of the data payload and serve as a gatekeeper for the data. Also, to make the system

self-contained we propose inclusion of an execution infrastructure (similar to the iRODS rule engine) which will run

on top of any operating system and capture all lineage and administrative policies.

By including policies to verify the trustworthiness of the execution infrastructure within the PEO, a trusted

environment can be implemented. Each PEO can verify that it is in a trusted environment while controlling

manipulation of the associated data set. By providing mechanisms for a data object to be aware of its environment,

PEOs enable controlled operations including redaction, integrity checking, derived product generation, data caching,

and access control. A PEO can characterize all provenance information needed to instantiate a derived data product,

including governing policies, and the required trusted environment. There is a strong link between trusted

environments and containers used for reproducible computing. We discuss various issues related to policy

encapsulated objects.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

27

28

iRODS UGM 2020, June 9-12, 2020, Tucson, Arizona, USA
[Authors retain copyright. Nils Haustein – IBM European Storage Competence Center, Mauro Tridici – Euro-Mediterranean Center on Climate
Change]

1

Nils Haustein
IBM European Storage Competence Center

Am Weiher 24, 65451 Kelsterbach
nils_haustein@de.ibm.com

Mauro Tridici
Euro-Mediteranean Center on Climate Change

via Augusto Imperatore 16, 73100 Lecce
mauro.tridici@cmcc.it

Integration of iRODS with IBM Spectrum Archive™
Enterprise Edition

A flexible tiered storage archiving solution

29

3

INTRODUCTION

A tiered storage system provides lower total cost of ownership for large volumes of data by storing data on the most
appropriate storage tier (flash, disk and tape). Independent studies have shown that total cost of ownership of tape
solution provides an expected TCO that is more than 80% lower than that of the all-disk solution [1].

While tape storage is suitable for storing large volumes of data over long periods of time at lower cost, access time
to data on tape is significantly higher than to data on disk. Providing data from tiered storage file systems with tape
in multi-user environment bears several challenges. These challenges and solutions are further elaborated in this
blog article [2].

In summary, tiered storage file systems with tape storage are a blessing and a curse. The blessing is that the user can
see all files regardless if these are stored on disk or tape. Cursing starts when the when the user opens a file that is
stored on tape because the recall takes one or more minutes. Unfortunately, the user is not aware that the file is on
tape because standard file systems do not indicate whether the file is on disk or on tape. It gets even worse if the
many users simultaneously open several files that are on tapes. This causes even longer waiting times because
transparent recalls are not tape optimized.

To address these challenges, the user must be able to determine the location of files and request files from tapes to
be recalls. These recall requests coming from multiple users can be queued and recalled periodically in a tape
optimized manner whereby the files are sorted by the tape-ID and the location on tape. The combination of iRODS
with IBM Spectrum Archive Enterprise Edition can accommodate this.

In this paper Mauro Tridici from the Euro-Mediterranean Center on Climate Change (CMCC) and Nils Haustein
from the IBM European Storage Competence Center give a brief introduction to iRODS and explain examples for
integrating iRODS with IBM Spectrum Archive and its advantages. For more information refer to our whitepaper
[3].

IRODS

iRODS software is a data management layer - maintained by the iRODS consortium - that sits above the storage that
contain data, and below domain-specific applications [4]. The data virtualization capabilities of iRODS make it a
one-stop shop for all data regardless of the heterogeneity of storage devices. Whether data is stored on a local hard
drive, on remote file systems or object storage, iRODS' virtualization layer presents data resources in the classic
files and folders format, within a single namespace.

iRODS is open-source, data management middleware that enables users to:

• Access, manage, and share data across any type or number of storage systems through iRODS APIs
(iCommands, REST, WebDAV, Python, C++, Java)

• Automate workflows through powerful rules and microservices
• Search and find data through descriptive metadata and query tools

iRODS rules are executed based on conditions or, in iRODS terminology, Policy Enforcement Points (PEPs).
iRODS can be integrated with different kind of storage system providing storage space for the archived data. In the
next section we describe a solution that integrates iRODS with a tiered storage file system based on IBM Spectrum
Scale and IBM Spectrum Archive.

30

4

TIERED STORAGE FILE SYSTEM

IBM Spectrum Scale™ [5] is a software-defined scalable parallel file system providing tiered storage capabilities.
IBM Spectrum Archive Enterprise Edition [6] provides and manages the tape tier within an IBM Spectrum Scale file
system. The IBM Spectrum Scale file system can be accessed via standardized protocols such as POSIX, NFS,
SMB, HDFS and Object.

As shown in Figure 1, the combination of IBM Spectrum Scale with IBM Spectrum Archive provides a tiered
storage file system with different storage media including Flash and SSD, disk and tape. While Flash and disk
storage are managed by IBM Spectrum Scale directly, the tape storage is managed by IBM Spectrum Archive. IBM
Spectrum Scale integrates a policy engine that allows to place the files on a storage tier upon file create and migrate
the files to other storage tiers over the data lifecycle. Policies are defined and tested once and can then be configured
to run automatically in the background. For example, a policy can places all new files on the disk storage tier of the
IBM Spectrum Scale file system and if files have not been accessed for 30 days then migrate these files to tape
storage.

Figure 1: Combination of IBM Spectrum Scale with IBM Spectrum Archive tape tier

SOLUTION INTEGRATING IRODS WITH IBM SPECTRUM ARCHIVE

This solution integration iRODS and IBM Spectrum Archive is shown in Figure 2 and is comprised of three servers
that are interconnected. One server represents the IBM Spectrum Scale cluster containing a tiered storage file system
which is placed on disk and tape. The tape tier is managed by IBM Spectrum Archive. This file system is exported
via NFS to the iRODS server.

The iRODS server hosts the iRODS Metadata Catalog (iCAT) database. The iCAT is a relational database that holds
all the information about data, users, and zone that the iRODS servers need to facilitate the management and sharing
of data.

The iRODS client can host an application that interacts with the iRODS server through the available API. In this
example the iRODS client command line (iCommand) is used to archive, describe, search and retrieve data.

iRODS server, client and the NFS mounted tiered storage file system represent an iRODS zone.

31

5

Figure 2: Solution architecture of iRODS with IBM Spectrum Archive

This solution can be configured to provide value adding functions, including:

• Prevent transparent recalls of files that are on tape and add files that are requested by the iRODS user to a
queue and recall them in a tape optimized manner

• Determine file migration state from an iRODS user perspective
• Set storage quota for users that apply to all files regardless if stored on disk or on tape in the underlying
• Extracting and ingesting file metadata to the iRODS metadata catalog (iCAT) automatically after a file has

been stored

Subsequently we briefly explain these functions. The actual implementation can be found at the GitHub repository
[7].

Prevent transparent recall

To prevent transparent recalls, we can leverage a new iRODS rule along with a new custom microservice. The
iRODS rule, runs on the iRODS server, intercepts an open request for a file using the system defined PEP rule
acPreprocForDataObjOpen and invokes the new custom microservice along with the path and file name of
the file to be opened. The new microservice determines if the file is migrated. If the file is not migrated, then the
microservice returns “1” to the rule. Otherwise, if the file is migrated, then the microservice returns “0” to the rule
and adds the path and filename queue. The queue can be a file list that resides on the IBM Spectrum Archive server.
If the microservice returned “0” then the rule fails the file open request and informs the user that the file is still on
tape.

Here is an example of a file open request for a migrated file:

$ iget -f file1
file /archive/home/mia/col1/file1 is still on tape, but queued to be staged.

To recall the files that have been added to the queue, a recall-program must be implemented that recalls these files
using the tape optimized recall functions. This recall-program can be scheduled to run periodically on the IBM
Spectrum Archive server, if the queue for the files to be recalled is a file list that is accessible by the Spectrum
Archive server.

The time interval of the recall-program execution defines the maximum time the user must wait before he can access
a file that was migrated to tape. To provide the user the capability to display the file status, we created another
example which is explained next.

32

6

Display file status

To display the migration state of a file stored in an iRODS zone we created a new command for the iRODS user:
ifilestate. This new command invokes a new iRODS rule that invokes a new microservice that checks the state
of a file using the UNIX command: stat. Depending on the result of this check done by the new microservice the
rule program returns the appropriate message to the user. Find below an example output of the new command:

$ ifilestate /archive/home/mia/col1/file1
Level 0: file /archive/home/mia/col1/file1 is MIGRATED

$ ifilestate /archive/home/mia/col1/file0
Level 0: file /archive/home/mia/col1/file0 is NOT migrated

Set quota for the entire file space

To set and enable quota for a given user using a given iRODS storage resource we did the following:

Enable quota by editing the file /etc/core.re and adding the following line:

acRescQuotaPolicy {msiSetRescQuotaPolicy("on"); }

Set quota limit of 2 GB for user1 on the iRODS storage resource that represents the tiered storage file system
provided by IBM Spectrum Scale. In this example we have one iRODS storage resource in the zone that is named
“buffer”. Because we only have one storage resource the total quota limit is identical to the quota limit of the storage
resource buffer:

$ iadmin suq user1 buffer 2147483648
$ iadmin suq user1 total 2147483648

To calculate the current storage consumption on a periodic basis we created a delayed iRODS rule that invokes the
integrated microservice msiQuota and loaded this into the rule engine using the following command:

$ irule -F /etc/irods/quota.r -r irods_rule_engine_plugin-irods_rule_language-instance

Now if the user tries to store more than 2 GB on the storage resource he gets a quota exceeded error:

$ iput bigfile2
/archive/home/user1/col1/bigfile2, status = -110000 status = -110000
SYS_RESC_QUOTA_EXCEEDED

Extracting and ingesting metadata

The last project we implemented (essentially based on Daniel Moore NetCDF header extraction microservice [10])
extracts metadata from ingested files and add this into the iRODS catalog to make it available for subsequent
searches.

For the implementation we again used a custom iRODS rules and microservice. We created a new iRODS rule that
is invoked after a file has been stored in the iRODS zone, for example by using the iput command. This rule
implements the integrated iRODS PEP acPostProcForPut and invokes a new microservice. The new microservice
harvests the information from the file and return this to the iRODS rule which adds it to the file metadata.

33

7

To make it simpler in this paper, imagine the microservice determines the type of the file using the UNIX command:
file and returns this as string to the iRODS rule. The iRODS rule adds the value of the file type string to the attribute
Filetype to the file metadata. After ingesting files to iRODS using the iput command, the file will automatically
obtain the file type as metadata as shown below:

$ iput document.pdf file1

$ imeta ls -d file1
AVUs defined for dataObj file1:
attribute: Filetype
value: PDF document
units:

It is also possible to search in iRODS for all files based on their type using the command: imeta:

$ imeta qu -d Filetype like %PDF%
collection: /archive/home/mia/col1
dataObj: file1
collection: /archive/home/mia/col1
dataObj: file2

As shown above the search found two files.

This is a simple example. There are many iRODS projects that leverage this mechanism to extract file header
information from JPEG-files [8] or NETCDF-files [9] and many other file types.

34

8

REFERENCES

[1] Disk and Tape TCO study by ESG:
https://www.lto.org/wp-content/uploads/2018/08/ESG-Economic-Validation-Summary.pdf

[2] Blog article challenges and solutions with tiered storage file systems
https://community.ibm.com/community/user/imwuc/blogs/nils-haustein1/2020/02/21/irods-with-ibm-spectrum-
archive

[3] IBM Whitepaper “Integration of iRODS with IBM Spectrum Archive Enterprise Edition”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102815

[4] iRODS: https://irods.org/

[5] Spectrum Scale: https://en.wikipedia.org/wiki/IBM_Spectrum_Scale

[6] Spectrum Archive: https://developer.ibm.com/storage/products/ibm-spectrum-archive/

[7] Github repository for this project: https://github.com/nhaustein/irods-tieredStorage-tape

[8] JPEG file: https://en.wikipedia.org/wiki/JPEG

[9] NETCDF data format: https://en.wikipedia.org/wiki/NetCDF

[10] Project for extracting NETCDF metadata by Daniel Moore: https://github.com/d-w-
moore/extract_netcdf_header_msvc

35

9

DISCLAIMER

© Fondazione CMCC - Centro Euro-Mediterraneo sui Cambiamenti Climatici 2018
Visit www.cmcc.it for information on our activities and publications.

The Foundation Euro-Mediterranean Centre on Climate Change has its registered office and administration in Lecce
and other units in Bologna, Venice, Capua, Sassari, Viterbo and Milan. The CMCC Foundation doesn’t pursue
profitable ends and aims to realize and manage the Centre, its promotion, and research coordination and different
scientific and applied activities in the field of climate change study.

© IBM Corporation 2020

The information contained in this documentation is provided for informational purposes only. While efforts were
made to verify the completeness and accuracy of the information provided, it is provided “as is” without warranty of
any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise
related to, this documentation or any other documentation. Nothing contained in this documentation is intended to,
nor shall have the effect of, creating any warranties or representations from IBM (or its suppliers or licensors), or
altering the terms and conditions of the applicable license agreement governing the use of IBM software.

The following terms are registered trademarks of International Business Machines Corporation in the United States
and/or other countries: IBM Spectrum Scale, IBM Spectrum Archive

LINUX is a registered trademark of Linus Torvalds.

iRODS Copyright © 2005-2018, Regents of the University of California and the University of North Carolina at
Chapel Hill. All rights reserved.

iRODS is released under a 3-clause BSD License.

36

SmartFarm Data Management
Kieran Murphy

Agriculture Victoria

Victoria, Australia

kieran.murphy@ecodev.vic.gov.au

ABSTRACT

Agriculture Victoria's research group is geographically disperse, with research data from research 'SmartFarms'

requiring many manual steps. Data management challenges increase with large datasets generated with new sensing

technologies. This requires the development of standardised, automated, on line, authenticated and verifiable

standard processes for uploading data for storage and analytics on computing facilities.

Working with iRODS, Agriculture Victoria are piloting new data management workflows of 'SmartFarm' data, and

this talk will discuss lessons from small, medium and high data Agriculture SmartFarm use cases using edge

computing and collaborative data infrastructure and the flow on development of capability for AVR researchers.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

37

38

Data management in autonomous driving projects
Marcin Stolarek

Aptiv

Kraków, Poland

marcin.stolarek@aptiv.com

Radosław Rowicki

Aptiv

Kraków, Poland

radoslaw.rowicki@aptiv.com

Kacper Abramczyk

Aptiv

Kraków, Poland

kacper.abramczyk@aptiv.com

Mateusz Rejkowicz

Aptiv

Kraków, Poland

mateusz.rejkowicz@aptiv.com

ABSTRACT

Aptiv deployed iRODS in production around 1.5 year ago, together with the start of the development phase of one of

the big projects on autonomous driving. The tool was selected after a few POC installations. The major advantage of

iRODS we recognized at the time was a number of side projects and plugins available.

In such industrial projects, it's quite common to have multiple partners working on different parts of a workflow.

Tracking data status - migrating them between partners and within engineering groups responsible for data

collection, manual and automatical analysis is a fairly complicated task.

From a technical perspective, our deployment is based on two DNS round-robin groups of iRODS resource servers,

both groups are using Lustre filesystem as a storage backend. During testing, we reached ~90Gbps, which was our

estimated data collection rate. Besides HPC filesystems resource daemons are also configured to use AWS S3

buckets connected over AWS direct connect(30Gbps).

I'll explain our configuration with a DNS round-robin trick. Share our current struggles related to automatic

registration of files from Lustre filesystem, audit rule engine. Difficulties we had in early stages(adoption) and

current issues.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

39

40

CyVerse Discovery Environment: Extensible Data
Science workbench and data-centric collaboration

platform powered by iRODS
Sarah Roberts

CyVerse / University of Arizona

Tucson, Arizona, USA

sarahr@cyverse.org

Sriram Srinivasan

CyVerse / University of Arizona

Tucson, Arizona, USA

sriram@cyverse.org

Nirav Merchant

CyVerse / University of Arizona

Tucson, Arizona, USA

nirav@email.arizona.edu

Tina Lee

CyVerse / University of Arizona

Tucson, Arizona, USA

tinal@cyverse.org

ABSTRACT

The Discovery Environment, a web-based Data Science workbench that supports data management, analysis and

collaboration tasks for diverse communities of users from astronomers to zoologists, is actively utilized by

thousands of scientists world-wide. In this presentation we highlight how we have leveraged iRODS alongside other

frameworks like Kubernetes, NodeJS, React, and Asynchronous Tasks to meet researchers' growing demands for

reproducible, extensible, collaborative and scalable analysis environments. We also provide an overview of the

Terrain API which provides developers with programmatic access to extend and adopt the Discovery Environment's

underlying cyberinfrastructure. Finally, we touch upon our Visual and Interactive Computing Environment (VICE),

our newest service that allows researchers to use Jupyter Notebooks, RStudio, Rshiny and other custom web-based,

interactive data analysis and visualization tools. VICE provides secure out-of-the-box, single sign-on access to all

container (Docker)-based applications and can manage CPU- and GPU-based analysis with configurable resource

allocation per task.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

41

42

iRODS and Federated Identity authentication: current
limitations and perspective

Claudio Cacciari

claudio.cacciari@surfsara.nl

Stefan Wolfsheimer

stefan.wolfsheimer@surfsara.nl

Hylke Koers

hylke.koers@surfsara.nl

Arthur Newton

arthur.newton@surfsara.nl

Tasneem Rahaman-Khan

tasneem.rahaman-

khan@surfsara.nl

Matthew Saum

matthews@surfsara.nl

Gerben Venekamp

gerben.venekamp@surfsara.nl

SURF

Netherlands

ABSTRACT

iRODS does not support natively authentication protocols for federated identity management, such as SAML or

OpenID Connect (OIDC). Additional security measures, like two factor authentication (2FA), are neither supported.

There are some third-party plugins or modules that support a limited sub-set of those features, but a comprehensive

and flexible solution is missing. In this presentation we would like to outline use cases and explain the limits of the

current implementation. Consider a web application against which a user authenticates using OIDC. The application

is connected to iRODS to upload data on behalf of the user. We want the interaction between iRODS and the web

application to be transparent for the user. The existing plugin (auth_plugin_openid) is not suitable because it

requires an explicit authentication from the user. We could make the web application pass the OAuth2 access token

to iRODS and validate it through a Pluggable Authentication Module (PAM) extension acting as an OIDC client.

Since the token expires after a while, it would need to be refreshed on the iRODS side using an refresh token. The

current implementation does not support this workflow, especially dealing with two tokens.

A comprehensive solution would be able to overcome those and other limitations. At the same time, it would

simplify the life of the users and of the administrators. For example, when an iRODS instance supports multiple

authentication protocols and the client is a single entry point shared among multiple users, like a WebDAV endpoint

based on Davrods, the administrator is forced to expose a different endpoint for each authentication protocol because

the protocol is defined client-side. Enabling the server to support a fall-through mechanism, would allow the client

to just pass the credentials without the need to pick one of the protocols in advance.

SURF has started to develop a proof of concept that aims to achieve that solution extending the current iRODS PAM

support so that it can deal with an arbitrary exchange of tokens and challenges and delegating the implementation of

the specific federated identity protocols to dedicated PAM modules. In parallel the iRODS consortium promoted the

design of a more general implementation through the discussion in the Authentication Working Group. The group

has adopted the idea of supporting a flexible conversation between client and server, but rather than implementing it

on the PAM side, it decided to extend the iRODS API to support different authentication methods through plugins.

This presentation describes the main scenarios related to the support of federated identity management in iRODS

and the possible solutions.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

43

44

The Past, Present and Future of iRODS at the Texas
Advanced Computing Center

Chris Jordan

The University of Texas at Austin

Austin, Texas, USA

ctjordan@tacc.utexas.edu

ABSTRACT

The Texas Advanced Computing Center has operated iRODS services for over 10 years, both for shared support of

general purpose research data management, and as a dedicated service supporting specialized cyberinfrastructure

projects. We will provide a brief history of iRODS at TACC, and give an overview of the current uses of iRODS

and iRODS-based cyberinfrastructure at TACC. Projects utilizing iRODS at TACC have data collections ranging

from a few terabytes to a few petabytes, and span the gamut from CT scanning through genome sequencing and

archival of digital artworks; we will briefly discuss how TACC utilizes iRODS to support this wide variety of use

cases, and how we plan to deploy iRODS in the future to support the continued growth of research data in both size

and complexity.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

45

46

iRODS_CSharp
Reink Fidder

Utrecht University

Utrecht, Netherlands

rienkfidder@gmail.com

Jelle Teeuwissen

Utrecht University

Utrecht, Netherlands

j.teeuwissen@students.uu.nl

Best Student Technology Award Winner

ABSTRACT

We are two computer science students at the Utrecht University. We are currently in our second year of our

bachelor's degree.

We are both partaking in the honours programme, which is also the reason we created this client library.

As part of our honours requirements, we worked as part of the Care2Report (C2R) research team

(https://sites.google.com/view/care2report). This research is aimed at creating a program which can transcribe and

summarize medical consultation, so that doctors don't have to spend a lot of time writing consultation reports and

can spend more time actually consulting.

Utrecht University uses a system called YODA for cloud storage, which is a portal that uses iRODS as a backend.

For our assignment, we needed to create a way to upload logs from the C2R system to YODA and since the program

is written mainly in C#, we decided to create a client that could be used to establish a connection to the YODA

backend and transfer files with.

Since many researchers at Utrecht University use C# for their programming, we figured this would be a problem that

would be encountered more often, so we thought it was a good idea to create a solution that wasn't just a way to

solve our problem, but could also be used by others. And so, we started building a general iRODS C# client library.

The finished product is a client library which performs all the basic tasks that an iRODS client library should be able

to perform, such as collection operations (create/remove/rename), data object operations (create/download/upload),

metadata operations and a variety of queries.

The repository can be found at https://github.com/UtrechtUniversity/irods-Csharp

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

47

As for the impact on individuals, society, science and systems & technology; all areas are affected in roughly the

same way. Anybody who wishes to get access to iRODS from their C# code will no longer need to create a way to

use some other client library, but can use the native C# client library. This decreases the amount of work needed and

increases the performance and ease of use.

In conclusion, the client library we have created can be viewed simply as a tool to make iRODS more accessible.

Even though the main motivation for creating it was our own project, we hope there will be others that can use the

functionalities we have created, or perhaps even improve on it.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

48

Using iRODS to build a research data management
service in Flanders

Ingrid Barcena Roig

KU Leuven

Leuven, Belgium

ingrid.barcenaroig@kuleuven.be

ABSTRACT

This presentation will discuss how iRODS is being used by the Flemish Supercomputing Centre (VSC) to

implement a new research data management service highly coupled with the VSC High Performance Computing

infrastructure. The current status of the project as well as the future plans will be presented.

The Tier-1 supercomputing infrastructure in Flanders has until 2018 mainly been targeted at users with serious

calculation issues (typical HPC/HTC workloads). Although this platform in its current form is already very

successful, the current focus on compute no longer meets all the needs of many researchers. More and more users

have computational work that makes intensive use of large data sets. Migrating this data to and from the compute

infrastructure whenever it is to be used for a calculation is very inefficient because of the scale.

Therefore, VSC decided on 2018 to start a new service focused on research data management. The new Tier-1 Data

service aims to provide a service to allow users to store research data during the active phase of the research data life

cycle (that is, data that is being collected and analysed) and has not yet being published. This service is restricted to

data of research projects that are using the VSC Tier-1 Compute infrastructure.

This Tier-1 Data service is based on iRODS and has as primary goal to offer the users a platform to easy manage

research data and help them to apply the FAIR principles to their research data from the very beginning of their

projects. This should make it easier to transfer their research data at the end of the project to institutional or domain

specific repositories for publication and preservation and when applicable ensure they are made publicly available

(open access). This platform should also help the researchers to run their scientific workflows more efficiently by

providing tools to automate data collection, data quality control and stage data from and to the Tier-1 Compute

system.

The platform has recently started its pilot phase. During this phase a reduced number of research groups will be

invited to build their research workflows using the new data service. The pilot projects selected are from different

scientific domains (Climate Change studies, Humanities and Arts, Biological research, Life science, Plasma

Astrophysics, …), have a strong collaborative nature between research groups of several Flemish universities and

the usage of the new data service should facilitate the way they create, manage, share and reuse research data.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

49

50

Application of iRODS to NIEHS Data Management
Mike Conway

NIEHS / NIH

Durham, NC, USA

mike.conway@nih.gov

Deep Patel

NIEHS / NIH

Durham, NC, USA

deep.patel@nih.gov

ABSTRACT

This will be a survey of current NIEHS data management strategy, in two parts. First will be an overview of data

management challenges at NIEHS and the context in which we are employing iRODS, including developments in

data governance policy, data sharing policy, knowledge management, LIMS (Laboratory Information Management

Systems), standard workflow languages and pipelines, and cloud migration.

The second part will be a review of technology developments, including collaborative development of Metadata

Templates, work on web interfaces, standard pluggable search integration, indexing, and developments in the

GA4GH Cloud Work Stream.

It is anticipated that several releases of various code libraries will also be announced.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

51

52

iRODS Client: NFSRODS 1.0
Kory Draughn

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill

korydraughn@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

Alek Mieczkowski
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
info@irods.org

Jason Coposky
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill
jasonc@renci.org

Mike Conway
NIH / NIEHS

mike.conway@nih.gov

ABSTRACT

An update from last year’s preview, this v1.0 release of NFSRODS[1] now provides multi-user support for NFSv4

ACLs by handling calls from nfs4_setfacl and nfs4_getfacl. It also supports sssd for easier AD/LDAP integration

and secure connections to iRODS via SSL. NFSRODS v1.0 can provide a direct NFSv4.1[2] mount point to iRODS[3]

users in enterprise environments.

Keywords

iRODS, client, NFS, NFSv4, data management

INTRODUCTION

Since 2019’s initial implementation[4], the iRODS Consortium has worked to complete the implementation of an

NFSv4.1 server that provides a complete lossless bidirectional permission mapping of multiple owners of collections

and data objects in iRODS to NFSv4 ACLs.

Along the way, as interest and usage increased in the community, additional features were requested and implemented.

Easy Active Directory (AD) and LDAP support is included via support for sssd.

NFSRODS v1.0 is nearly feature complete. With this release, the roadmap for NFSRODS includes adding support

for parallel file transfer and hard links.

ARCHITECTURE

The core of NFSRODS has two components. The NFS server side of NFSRODS is provided by NFS4J[5] and is largely

lifted directly from the open source project. NFS4J has a plugin architecture for its VirtualFileSystem and allows

for other technologies to provide the filesystem interface. The iRODS Jargon client library[6] is used to implement

an iRODS VirtualFileSystem. Jargon implements the iRODS protocol and communicates as an iRODS client.

The security model of NFSRODS deployment makes a few assumptions about its environment. First, the usernames

and UIDs must be consistent from the mountpoint, to the NFSRODS server, to within the iRODS catalog. The NFS

connection between the mountpoint and NFSRODS communicates which user is requesting access by unix UID. If

alice (UID 509) makes a request to ls within the mountpoint, the NFSRODS server sees a request from UID 509

only. The NFSRODS server must be able to map the incoming UID to an iRODS username. This is done by the OS

and uses the standard /etc/passwd file. Therefore, these must be kept in sync across the di↵erent machines in the

iRODS UGM 2020 June 9-12, 2020, Virtual
[Authors retain copyright.]

1

53

Figure 1. NFSRODS assumes an authenticated user without sudo access within the Enterprise VM.

system. It is assumed that this will be handled via external systems, most usually LDAP. The NFSRODS server maps

the incoming request to an iRODS request which uses the matching username. It is assumed that the mechanism

keeping the UIDs and usernames consistent is also keeping the list of users within the iRODS catalog consistent.

With this model, it is very important to note that any user with sudo rights on the Enterprise VM can become any

other user, and therefore gain access to iRODS as that other user. It is recommended that there be no sudo rights

available on the Enterprise VM where the mountpoint is accessible to the end user.

PERMISSIONS

In iRODS, multiple users and groups can be given di↵erent permissions on a collection or data object. Unix does

not provide this capability and therefore, iRODS permissions cannot be mapped into traditional Unix permissions[7]

without losing information. To get around this, NFSRODS uses NFSv4 ACLs.

Figure 2. Bidirectional mapping of NFSv4 Commands and iRODS Permissions.

NFSv4 ACLs provide more than enough control for reflecting iRODS permissions in Unix. To manage permissions

through NFSRODS, you’ll need to install the package that contains nfs4_getfacl and nfs4_setfacl. On Ubuntu

16.04, that package would be nfs4-acl-tools. With these commands, you can view and modify all permissions in

iRODS.

The order of Access Control Entries (ACEs) within an ACL does not matter in NFSRODS. When NFSRODS has

2

54

to decide whether a user is allowed to execute an operation, it takes the highest level of permission for that user

(including groups the user is a member of).

Using nfs4_setfacl

When using nfs4_setfacl, it is important to remember the following:

• Domain names within the user and group name field are ignored.

• Special ACE user/group names (e.g. OWNER, GROUP, EVERYONE, etc.) are not supported.

• Unsupported permission bits are ignored.

• The highest permission level provided is what NFSRODS will set as the permission.

Below is the permissions translation table used by NFSRODS when nfs4_setfacl is invoked. The list is in descending

order of iRODS permissions.

NFSv4 ACE Permission Bit NFSv4 ACE Permission Bit Name iRODS Permission

o ACE4_WRITE_OWNER own

a ACE4_APPEND_DATA write

w ACE4_WRITE_DATA write

r ACE4_READ_DATA read

Table 1. NFSRODS v1.0 Mapping of NFSv4 ACE Permission Bits to iRODS Permissions

A simple example is as follows:

$ nfs4_setfacl -a A::john@:ro foo.txt

NFSRODS will see that the ACE4_READ_DATA and ACE4_WRITE_OWNER bits are set. It then maps these to appropriate

iRODS permissions and takes the max of those. NFSRODS will then set john’s permission on foo.txt to own.

Using nfs4_getfacl

Using this command is much simpler. When invoked, it returns the list of iRODS permissions on an object as an

ACL. The mapping used for translation is shown below.

iRODS Permission NFSv4 ACE Permission Bits

own rwado

write rwa

read r

Table 2. NFSRODS v1.0 Mapping of iRODS Permissions to NFSv4 ACE Permission Bits

nfs4_setfacl Whitelist

NFSRODS o↵ers a whitelist for granting nfs4_setfacl permission to particular users.

If a user is in the whitelist or in a group in the whitelist, they can run nfs4_setfacl on the specified logical path or

any collection or data object below it, regardless of their iRODS permissions on that collection or data object.

3

55

A rodsadmin can add a user to the whitelist by adding a specific iRODS AVU (metadata) on the user.

$ imeta add -u <username> irods::nfsrods::grant_nfs4_setfacl <logical_path_prefix>

The following example demonstrates adding alice#tempZone to the whitelist with a

prefix of /tempZone/project_a/lab/notes:

$ imeta add -u alice irods::nfsrods::grant_nfs4_setfacl /tempZone/project_a/lab/notes

$ imeta ls -u alice

AVUs defined for user alice#tempZone:

attribute: irods::nfsrods::grant_nfs4_setfacl

value: /tempZone/project_a/lab/notes

units:

A user can set permissions via nfs4_setfacl on a collection or data object if any of the following are true:

1. The user is an iRODS administrator (i.e. rodsadmin).

2. The user has own permission on the collection or data object.

3. The user is a member of a group that has own permission on the collection or data object.

4. The user is in the whitelist with a prefix that covers the collection or data object.

5. The user is a member of a group in the whitelist with a prefix that covers the collection or data object.

USAGE

Deployment of NFSRODS v1.0 requires some preparation and then three steps.

The preparation includes making sure that the necessary user UIDs and usernames are available for the di↵erent com-

ponents (Enterprise VM, NFSRODS server, and within the iRODS Catalog). The three steps include configuration,

the docker run command, and setting up the mountpoint.

Configuration

Configuration for NFSRODS includes three configuration files, two of which do not need changes from the distributed

examples. The exports and log4j.properties files can be used as is.

The server.json file needs to be updated to point to the correct iRODS server:

{

// This section defines options for the NFSRODS NFS server.

"nfs_server": {

// The port number within the container to listen for NFS requests.

"port": 2049,

// The path within iRODS that will represent the root collection.

// We recommend setting this to the zone. Using the zone as the root

// collection allows all clients to access shared collections and data

// objects outside of their home collection.

"irods_mount_point": "/tempZone",

4

56

// The refresh time for cached user information.

"user_information_refresh_time_in_milliseconds": 3600000,

// The refresh time for cached stat information.

"file_information_refresh_time_in_milliseconds": 1000,

// The refresh time for cached user access information.

"user_access_refresh_time_in_milliseconds": 1000,

// Specifies whether the force flag should be applied when overwriting

// an existing file. If this option is false, an error will be reported

// back to the client.

"allow_overwrite_of_existing_files": true

},

// This section defines the location of the iRODS server being presented

// by NFSRODS. The NFSRODS server can only be configured to present a single zone.

"irods_client": {

"host": "hostname",

"port": 1247,

"zone": "tempZone",

// Defines the target resource for new data objects.

"default_resource": "demoResc",

// Enables/disables SSL/TLS between NFSRODS and the iRODS server.

//

// The following options are available:

// - CS_NEG_REQUIRE: Only use SSL/TLS.

// - CS_NEG_DONT_CARE: Use SSL/TLS if the iRODS server is not set to CS_NEG_REFUSE.

// - CS_NEG_REFUSE: Do NOT use SSL/TLS.

"ssl_negotiation_policy": "CS_NEG_REFUSE",

// The total amount of time before an idle connection times out.

// Defaults to 600 seconds.

"connection_timeout_in_seconds": 600,

// An administrative iRODS account is required to carry out each request.

// The account specified here is used as a proxy to connect to the iRODS

// server for some administrative actions. iRODS will still apply policies

// based on the requesting user’s account, not the proxy admin account.

"proxy_admin_account": {

"username": "rods",

"password": "rods"

}

}

}

The nfs_server section of the configuration file defines the settings for the NFSv4 side of NFSRODS. This includes the

5

57

port number to expose as NFS (default 2049), the irods_mount_point to define how deep within iRODS the mount-

point will expose the virtual filesystem, and some cache settings (user_information_refresh_time_in_milliseconds,

file_information_refresh_time_in_milliseconds, and user_access_refresh_time_in_milliseconds) for how

long the NFSRODS server will keep a local copy of information found from the underlying Unix system or the iRODS

catalog.

The irods_client section of the configuration file defines the settings for the iRODS client side of NFSRODS

(host, port, and zone). The default_resource setting will define where any newly created files within the mount-

point are physically created within iRODS. Also found here are the ssl_negotiation_policy and the connec-

tion_timeout_in_seconds setting for idle connections to refresh.

NFSRODS occasionally needs to take action within iRODS that it would not be able to take without a higher privilege

level. In these cases, NFSRODS uses the proxy mechanism of iRODS to request actions on behalf of the requesting

user. The proxy_admin_account is used to configure a rodsadmin username and password.

Docker

Starting NFSRODS requires a single docker run command of the form:

$ docker run -d --name nfsrods \

-p <public_port>:2049 \

-v </full/path/to/nfsrods_config>:/nfsrods_config:ro \

-v </full/path/to/etc/passwd/formatted/file>:/etc/passwd:ro \

nfsrods

The options launch the image known as nfsrods, put the container into daemon mode, and define the name of the

running container (nfsrods), the port mapping from the outside world into the container, the volume mount to the

configuration files, and the volume mount of the host system’s /etc/passwd-formatted file.

It is important to note that the volume-mounted /etc/passwd-formatted file is expected to contain all of the users

planning to use NFSRODS. The users defined in this file MUST be defined in iRODS as well. Their usernames must

match the names defined in this file exactly as this is how NFSRODS matches users to the correct account in iRODS.

Restarting the NFSRODS server will not a↵ect existing mountpoints other than the requirement to re-fetch any lost

cache information.

SSL

If you want to connect NFSRODS to an iRODS Zone that is using SSL, a certificate file can be mounted for use

within the container:

-v </full/path/to/certificate.crt>:/nfsrods_ssl.crt:ro

The container will load any cert it finds at /nfsrods_ssl.crt within the container into the OpenJDK keystore.

6

58

sssd Integration

As an alternative to an /etc/passwd-formatted file, the default NFSRODS container also supports libnss-sss. It

can be used by configuring sssd on the container host and binding the sssd socket into the container.

$ docker run -d --name nfsrods \

-p <public_port>:2049 \

-v </full/path/to/nfsrods_config>:/nfsrods_config:ro \

-v /var/lib/sss:/var/lib/sss \

nfsrods

Using sssd, NFSRODS can use any sssd domain for ID mapping, including AD or LDAP. If sssd and /etc/passwd

are used together, passwd will be consulted first.

Mountpoint

Once the NFSRODS server is running, the standard mount command can be used to mount the remote filesystem

and provide a location for regular users to get access to the iRODS namespace:

$ sudo mkdir <mount_point>

$ sudo mount -o sec=sys,port=<public_port> <hostname>:/ <mount_point>

Note the hostname is the hostname where NFSRODS is running and the :/ after the hostname express to the mount

command to mount the entire namespace provided by NFSRODS.

If you do not receive any errors after mounting, then a unix user with a properly mapped UID and username should

be able to access the mount point like so:

$ cd <mount_point>/path/to/collection_or_data_object

FUTURE WORK

NFSRODS v1.0 represents a nearly feature-complete release and has been deployed into production in multiple

enterprise environments.

The only major features remaining to be added are hard link support and parallel file transfers in and out of iRODS.

Parallel transfer may be possible with the upcoming release of iRODS 4.2.9 where multiple streams can operate on

port 1247, reading or writing to a single data object.

NFSRODS v1.0 incorporates the NFStest[8] suite but should be paired with a performance testing model to charac-

terize its overhead. Anecdotal feedback suggests best and usable performance when the NFSRODS server is co-hosted

with the iRODS catalog provider. This makes sense as it reduces additional network hops.

SUMMARY

The demand for a virtual filesystem with included policy and well-understood semantics is very strong. iRODS

provides that abstraction and capability. However, it takes a lot of engineering e↵ort to teach existing tools and

workflows to speak the iRODS protocol. It is more likely that tools can read and write into a mountpoint provided

by a compatibility layer between POSIX and iRODS.

NFSRODS v1.0 provides this compatibility layer and has been deployed into production in multiple enterprise envi-

ronments. Existing tools can read and write into the iRODS namespace without any changes to their own code, and

iRODS organizational policy is enforced on the server.

7

59

REFERENCES

[1] iRODS Client NFSRODS. https://github.com/irods/irods_client_nfsrods

[2] Haynes, T., Noveck, D.: Network File System (NFS) Version 4 Protocol (2015)

https://tools.ietf.org/html/rfc7530

[3] Xu, H., Russell, T., Coposky, J., et al: iRODS Primer 2: Integrated Rule-Oriented Data System. In: Synthesis

Lectures on Information Concepts, Retrieval, and Services. 131pp. Morgan Claypool. (2017)

[4] Draughn, K., Russell, T., et al: NFSRODS: Presenting iRODS as NFSv4.1. 6pp. 2019 iRODS User Group

Meeting. (2019) https://irods.org/uploads/2019/Draughn-iRODS-NFSRODS-paper.pdf

[5] NFS4J. https://github.com/dCache/nfs4j

[6] Jargon - iRODS Java client library. https://github.com/DICE-UNC/jargon

[7] Traditional Unix permissions.

https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

[8] NFStest http://wiki.linux-nfs.org/wiki/index.php/NFStest

8

60

iRODS Rule Engine Plugin: Hard Links 4.2.8.0
Kory Draughn

Renaissance Computing Institute (RENCI)

UNC-Chapel Hill

korydraughn@renci.org

Terrell Russell

Renaissance Computing Institute (RENCI)

UNC-Chapel Hill

unc@terrellrussell.com

ABSTRACT

This new C++ rule engine plugin provides an iRODS system the ability to convey hard links to its users. An iRODS

system stores a hard link when replicas of two different iRODS data objects with different logical paths share a

common physical path on the same host. When this occurs, metadata is added to both logical data objects for

bookkeeping. This talk will explain the original use cases for hard links in iRODS and introduce Conway Diagrams

to help visualize the various corner cases.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

61

62

Creating an iRODS zone with Terraform
Brett Hartley

Wellcome Sanger Institute

Hinxton, Cambridgeshire, UK

bh9@sanger.ac.uk

ABSTRACT

A year ago, Sanger had 2 types of zones: production and development zones.

The development zones originally were for testing and development of both server and client components. Over

time, these zones became more and more necessary for client side testing. Server side testing became increasingly

limited. For the most part this was fine, because we didn't really need to do server side testing of potentially

breaking changes, because we hadn't upgraded in a while (most zones were 4.1.12 at the time)

The decision was made that we should upgrade both the iRODS version and the operating system version to 4.2.7

and Ubuntu 18.04. This meant upgrading iRODS on over 100 machines, with minimal disruption to the services and

the >9PB they serve. Part of any good upgrade process is testing on a suitable test infrastructure. Our objective was

to produce an Infrastructure as Code template to create an iRODS zone, so that zones could be created whenever

needed, in our OpenStack environment, freeing up resources when they were no longer required.

The end product has been used extensively in our upgrade testing, and has proven to be a useful tool for other

miscellaneous testing. Being able to stand up a new zone in minutes, rather than days has also added 2 more types of

zone: testing zones, which we spin up to test specific parts of iRODS, e.g. to produce simple reproducers for

otherwise hard to find bugs, and demonstration zones, which have features that we are looking to add to

development and production zones in the future.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

63

64

Building a national Research Data Management (RDM)
infrastructure with iRODS in the Netherlands

Saskia van Eeuwijk

SURF

Netherlands

saskia.vaneeuwijk@surfsara.nl

Hylke Koers

SURF

Netherlands

hylke.koers@surfsara.nl

ABSTRACT

In the Netherlands a lot of universities are looking at iRODS to support their researchers, as they recognize the

powerful potential of the tool in two areas: support for secure cooperation, and support over the entire research data

life cycle. Unfortunately, support teams in universities are hesitant to introduce the tool for two reasons:

• iRODS in itself is more suitable for IT-power users

• The support needed of iRODS within the university asks specific knowledge.

SURF, a national organization providing IT support and infrastructure for universities, stepped in and is now

working closely together with six universities towards a national RDM infrastructure based on iRODS.

SURF offers a hosted environment for iRODS for all participating universities, thus creating possibilities for the

researchers without the need for universities to invest upfront. Also, SURF unburdens the universities by offering a

hosted, supported environment. YODA, open source software created by the University of Utrecht (UU) on top of

iRODS, is being used to also attract users that have high demands in user friendliness, thanks to a web interface

designed to guide the researchers in many steps of the data life cycle, from the ingestion of the data to their

publication. SURF offers together with UU the support for the combined environments. The service is in pre-

production state at the moment. Already, the participating universities join in the development of YODA and

iRODS.

In the next two years, we hope to prove to the participating universities specifically, but also to the other universities

in the Netherlands, that iRODS and YODA are useful RDM tools for a lot of researchers. Early 2022 we plan to

expand the service and the cooperation. We hope by that time we can truly state that iRODS an YODA are an

important part of the RDM infrastructure in the Netherlands.

In our presentation we want to focus on describing a case study for the use of iRODS, not for a specific research

group, but for an entire nation to enhance the support of their researchers by working together on this iRODS based

infrastructure.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

65

66

iRODS at Bristol Myers Squibb: Status and Prospects.
Leveraging iRODS for scientific applications in

Amazon AWS Cloud
Mohammad Shaikh

Bristol Myers Squibb

New Jersey, USA

Mohammad.Shaikh@bms.com

Oleg Moiseyenko

Bristol Myers Squibb

New Jersey, USA

oleg.moiseyenko@bms.com

ABSTRACT

The iRODS practice at Bristol Myers Squibb is growing as we continue use it as the primary system of record across

several different scientific projects at multiple cloud environments. This presentation shares the latest updates on

how Bristol Myers Squibb is leveraging iRODS to manage and enrich various datasets in Amazon AWS Cloud. We

will cover typical data flows, architectural patterns, as well as interesting approaches for how we manage AWS

Lambda functions to update an iRODS Catalog with events that occur in one or more S3 buckets.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

67

68

Keeping Pace with Science: the CyVerse Data Store in
2020 and the Future

Tony Edgin

CyVerse / University of Arizona

Tucson, Arizona, USA

tedgin@cyverse.org

Edwin Skidmore

CyVerse / University of Arizona

Tucson, Arizona, USA

edwin@cyverse.org

ABSTRACT

This talk will describe the current features of the CyVerse Data Store and plans for its evolution. Since its inception

in 2010, the Data Store has leveraged the power and versatility of iRODS by continually extending the functionality

of CyVerse's cyber-infrastructure. These features include project-specific storage, offsite replication, third-party

service and application integrations, several data access methods, event stream publishing for indexing, and

optimizations for accessing large sets of small files. Current efforts to enhance the Data Store include project-

specific THREDDS Data Servers, S3 integration to allow bidirectional data flow between third-party storage and

compute, and integration with CyVerse's Continuous Analysis platform, an event-driven container-native execution

platform.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

69

70

iRODS Logical Quotas Policy Plugin
Jonathon Anderson

University of Colorado Research

Computing

Boulder, Colorado, USA

jonathon.anderson@colorado.edu

Kory Draughn

Renaissance Computing

Institute (RENCI)

UNC-Chapel Hill

korydraughn@renci.org

Terrell Russell

Renaissance Computing

Institute (RENCI)

UNC-Chapel Hill

unc@terrellrussell.com

ABSTRACT

University of Colorado Research Computing uses iRODS to provision space in its PetaLibrary/archive research data

storage service. This storage is implemented as top-level collections and is sold at a $/TB/year rate. In our

experience on other platforms, implementing storage allocations with user and/or group quotas leads to confusion,

particularly when individual users have access to multiple discrete storage allocations, as ownership metadata falls

out-of-sync from the logical spacial hierarchy of the file system. To provide more logical quotas atop the iRODS

collection hierarchy, the iRODS logical quotas policy plugin tracks the logical size of a collection--calculated as the

total size of all data objects nested within it--as collection-level metadata that is consulted before and updated after

i/o. This allows us to place a logical size limit on a collection, more closely matching our end-users expectations of

how storage allocations should behave. This talk covers our deployment experience and details about the plugin

implementation.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

71

72

iRODS Policy Composition: Principles and Practice
Jason Coposky

Renaissance Computing Institute (RENCI)

UNC-Chapel Hill

jasonc@renci.org

Terrell Russell

Renaissance Computing Institute (RENCI)

UNC-Chapel Hill

unc@terrellrussell.com

ABSTRACT

Historically a single static policy enforcement point, such as acPostProcForPut, was the sole location for all policy

implementation. With the addition of a continuation code to the rule engine plugin framework, we may now

configure multiple policies to be invoked for any given policy enforcement point. This subsequently allows for a

separation of concerns and clean policy implementation. The policy developers now have the ability to separate the

"when" (the policy enforcement points) from the "what" (the policy itself). How the policy is then invoked becomes

a matter of configuration rather than implementation.

Given this new approach, multiple policies can be configured together, or composed, without the need to touch the

code. For example, the Storage Tiering capability is effectively a collection of several basic policies: Replication,

Verification, Retention, and the Violating Object Discovery. All of these policies are configured via metadata

annotating root resources, and taken as a whole provide a flexible system for automated data movement.

iRODS UGM 2020, June 9-12, 2020, Virtual

Author(s) retain copyright.

73

74

iRODS Client: AWS Lambda Function for S3 1.0

Terrell Russell

Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

unc@terrellrussell.com

ABSTRACT

Under development for less than six months, this new AWS Lambda[1] function updates an iRODS Catalog with

events occurring in one or more S3 buckets. Files created, renamed, or deleted in S3 appear quickly in iRODS.

The following AWS configurations are supported with the 1.0 release:

- S3 -> Lambda -> iRODS

- S3 -> SNS -> Lambda -> iRODS

- S3 -> SQS -> Lambda -> iRODS

Keywords

iRODS, S3, AWS, lambda, data management

INTRODUCTION

As the iRODS Server has continued to improve its reliability, stability, and speed, additional functionality is being

demanded of the clients that connect to the iRODS Server. One of the additional bits of functionality requested over

the past few years has been a better ”out-of-the-box” onboarding, or ingest, experience for existing data.

In 2018, the Automated Ingest Capability[2], a Python-based client provided and supported by the iRODS Consor-

tium, was introduced. It provided a parallel, distributed solution for quickly scanning and re-scanning an existing

filesystem (and later, S3[3]) and registering or PUT-ting files into iRODS. It works very well, but it requires a bit

of configuration and computing overhead, and cannot see the ”negative space”, or when a file is removed from the

filesystem.

This Lambda function represents an alternative approach. It reduces the complexity involved in keeping up with a

changing filesystem and improves the coverage of removed files.

DESIGN GOALS

The design goals of this new approach to getting files registered into iRODS were three-fold. First, it needed to play

nicely with the universe of tools that already know how to write to S3 directly. Second, it must allow those updates

within the S3 namespace to smoothly flow into the iRODS Catalog. And third, it would trigger iRODS automated

data management due to crossing the policy boundary (the iRODS API).

A tool that could provide all three of these goals would solve a number of use cases the Consortium is seeing in the

community. Everyone who begins to consider iRODS as a solution already has a lot of data in existing systems. Many

of these existing systems are now in the ”cloud”, most commonly in Amazon S3 buckets.

iRODS UGM 2020 June 9-12, 2020, Virtual
[Authors retain copyright.]

1

75

Considerations

In looking at other clients and existing work, we realized that Amazon’s Lambda service could provide the ”place” to

run the new client code. Lambda can run Python code, and iRODS already provides a well-tested and robust Python

client library (python-irodsclient[4]).

Success with this approach would be defined as near-real-time, asynchronous updates to the iRODS Catalog. We

were interested not only in visibility of create and rename operations, but also delete operations.

IMPLEMENTATION

As a single Python file, the implementation is straightforward and self-contained. The lambda_handler function

captures variables from its configuration and environment, parses the event coming from S3, and then selects whether

to perform a registration into the iRODS Catalog or to perform a delete from the iRODS Catalog based on the parsed

S3 event.

The S3 Events that trigger an iRODS registration are:

• ObjectCreated:Put

• ObjectCreated:Copy

• ObjectCreated:CompleteMultipartUpload

The S3 Events that trigger an iRODS deletion are:

• ObjectRemoved:Delete

• ObjectRemoved:DeleteMarkerCreated

Rename operations sent to S3 are decoupled into independent ObjectRemoved and ObjectCreated events. This is

discussed later in the Limitations section.

At this time, each firing of the Lambda function reacts to a single S3 event.

CONFIGURATION OPTIONS

Inputs to the Lambda function come from three places.

First, the S3 Event payload itself provides the event type, bucket name, key name, and for ObjectCreated events,

the file size. This is not configuration, but supplies important context for the functioning of the Lambda.

Second, the Python runtime environment provides configuration information to the Lambda including

IRODS_COLLECTION_PREFIX, IRODS_ENVIRONMENT_SSM_PARAMETER_NAME, and optionally, IRODS_MULTIBUCKET_SUFFIX.

These must be defined by the owner of the Lambda.

And third, the iRODS connection information required by the Lambda is stored in the AWS Systems Manager > Pa-

rameter Store

as a JSON object of the type SecureString under the name that matches the environment

variable IRODS_ENVIRONMENT_SSM_PARAMETER_NAME. This information must be defined and protected separately be-

cause it contains the password of the configured iRODS user.

2

76

The SecureString is expected to have the form:

{

"irods_default_resource": "s3Resc",

"irods_host": "irods.example.org",

"irods_password": "rods",

"irods_port": 1247,

"irods_user_name": "rods",

"irods_zone_name": "tempZone"

}

iRODS is assumed to have its associated S3 Storage Resource(s) configured with HOST_MODE=cacheless_attached.

There should be no compound resources involved in the relevant resource hierarchy.

The Lambda function must be configured to trigger on all ObjectCreated and ObjectRemoved events for a connected

S3 bucket. Defining and maintaining the AWS Policies can vary widely in practice and is beyond the scope of this

document.

A well-configured Lambda function will update the iRODS Catalog in near-real-time as events flow from the S3

bucket(s).

The following AWS configurations are supported at this time:

Figure 1. S3 to Lambda to iRODS - Direct Connection

Figure 1 shows the simplest and most straightforward configuration. Events from S3 flow directly to the Lambda

function and triggered immediately.

Figure 2. S3 to Simple Notification Service (SNS) to Lambda to iRODS

Figure 2 shows how the Lambda can be triggered as one of many services being notified by S3 Events coming out of

a bucket as the Simple Notification Service (SNS) can be configured to send its Events to multiple endpoints. This

is useful for adding Lambda to an existing ecosystem of cloud microservices and APIs.

3

77

Figure 3. S3 to Simple Queue Service (SQS) to Lambda to iRODS

Figure 3 shows how the Lambda can be triggered in a more robust store-and-forward configuration. The Simple

Queue Service (SQS) provides retry functionality for failed operations as well as provides the ability to operate on

multiple events at once to save operational costs.

SSL Support

SSL to iRODS is supported by placing a certificate in a relative path within the Lambda package.

If the Lambda needs to be configured to connect with an SSL-enabled iRODS Zone, the following additional keys

need to be included in the environment in the Parameter Store:

{

"irods_client_server_negotiation": "request_server_negotiation",

"irods_client_server_policy": "CS_NEG_REQUIRE",

"irods_encryption_algorithm": "AES-256-CBC",

"irods_encryption_key_size": 32,

"irods_encryption_num_hash_rounds": 16,

"irods_encryption_salt_size": 8,

"irods_ssl_verify_server": "cert",

"irods_ssl_ca_certificate_file": "irods.crt"

}

The irods_ssl_ca_certificate_file is a relative path to a certificate file (or certificate chain file) within the Lambda

package.

4

78

Multi-Bucket Support

This Lambda function can also be configured to receive events from multiple sources at the same time.

Figure 4. Multi-bucket S3 to Lambda to iRODS

Figure 4 shows how the Lambda can be triggered by an event in multiple di↵erent S3 buckets. This is made possible

by having the target iRODS Resource be determined at runtime. This configuration reduces the number of Lambda

functions that need to be deployed and maintained within an organization.

If the irods_default_resource is NOT defined in the environment in the Parameter Store, then the Lambda function

will derive the name of a target iRODS Resource.

By default, the Lambda function will append _s3 to the incoming bucket name found in the S3 event.

For example, if the incoming event comes from bucket example_bucket, then the iRODS resource that would be

targeted would be example_bucket_s3.

However, if IRODS_MULTIBUCKET_SUFFIX is defined as -S3Resc, the the iRODS resource that would be targeted would

be example_bucket-S3Resc.

LIMITATIONS AND FUTURE WORK

This first release of the Lambda function meets all the design goals defined earlier. However, some limitations have

been documented.

The first is that S3 is decoupled from the Lambda itself. A rename operation sent to S3 is decomposed into a create

event and a delete event. Because of this decoupling and without the ability to confirm that two events are related

to one another, iRODS must treat this as a new data object. This means any metadata AVUs associated with the

now-deleted data object is lost.

It is possible this could be remedied with a comparison of full checksums of the object to be deleted and any new

incoming objects within a certain window of time, but this would be slow, and therefore, more expensive to operate.

The second limitation is that SQS configuration is limited to batch_size = 1. Operating on more than one message

5

79

at a time would increase performance (event throughput) and reduce the cost of running this Lambda at AWS.

However, it is unclear how the Lambda could signal partial success at this time. What happens to the failed events?

It is possible this could be remedied with an atomic database operations API at the iRODS Server level. If any events

fail to be processed, the entire batch could be safely returned to the SQS queue with no side e↵ects on the iRODS

Catalog.

SUMMARY

The AWS Lambda function for S3, a new iRODS client written in Python, has been developed relatively rapidly and

is already in multiple production deployments. It handles both creates and deletes within an S3 bucket and updates

the associated iRODS Catalog in near-real-time.

I would like to thank Bristol Myers Squibb for providing the pre-release testing environment and conformance test

scenarios that drove much of this initial work.

REFERENCES

[1] Russell, Terrell: iRODS Client AWS Lambda S3 (2020).

https://github.com/irods/irods_client_aws_lambda_s3

[2] Xu, Hao; King, Alan; Russell, Terrell; Coposky, Jason; de Torcy, Antoine; iRODS Capability: Automated Ingest

(2018) https://irods.org/uploads/2018/Xu-RENCI-Automated_Ingest-paper.pdf

[3] Amazon S3 (2006) https://en.wikipedia.org/wiki/Amazon_S3

[4] Python iRODS Client https://github.com/irods/python-irodsclient

6

80

