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ABSTRACT

NIEHS is, like many other research enterprises, entering a new era of opportunity and challenge 
as methods of data-driven discovery emerge. The challenges of managing FAIR (Findable, Ac-
cessible, Interoperable and Reusable) (Hagstrom, 2014) data have multiplied as the variety, ve-
locity and lifecycle requirements of environmental health data increase. FAIR data sharing relies 
on careful curation and management of upstream metadata quality, placement in appropriate data
sharing environments and an expansive view of the ‘data repository’ as a constellation of general
and specific data repositories that still exhibits the qualities of FAIR. The evolution of FAIR 
presents new opportunities and requires new ways of looking at the role of iRODS and policy-
based data management.
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INTRODUCTION

The National Environmental Health Association (NEHA) defines environmental health science as “the science and
practice  of  preventing  human  injury  and  illness  and  promoting  well-being”  [1].  The  National  Institute  of
Environmental Health Sciences has the mission to “discover how the environment affects people in order to promote
healthier lives.”  The importance of data and metadata management in service of this mission cannot be overstated.
The NIEHS experience is not unique. Data management challenges, and the conceptual framework of policy-based
data  management  to  address  these  challenges  have  evolved  over  the  years  from data  preservation  in  a  single
repository,  through  federated  data  sharing  environments,  to  a  new  reality  that  is  a  network  of  heterogeneous
generalist and specific repositories. The new distributed world supports FAIR data discovery and sharing, access
controls, and distributed analysis. 

IRODS AND EVOLVING DATA MANAGEMENT CHALLENGES

iRODS in the digital preservation era

If we trace the evolution of Policy-Based Data Management pioneered by the DICE Center, we see roots in the
archival and data preservation community. iRODS evolved from the original Storage Resource Broker (SRB) and
was redesigned as an open source data management platform with funding by the National Archives of the United
States. In the original conceptual framework, the focus was on the application of management policies over the data
life cycle in the form of a data grid, where a rule engine could enforce management policies in order to establish a
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trustworthy preservation environment. The data grid created a logical global namespace over a distributed storage
environment.  This logical  view and the policy management focus made iRODS a compelling platform for data
preservation, creating layers of abstraction and infrastructure independence from the underlying storage technology.
From these capabilities Dr. Reagan Moore was able to form a “Theory of Digital Preservation”. This theory says
that there are [2]:

 A minimal set of preservation processes (microservices),
 A minimal set of preservation metadata that can describe the preservation environment and effect 

of the preservation processes,
 A way of assessing the preservation metadata to validate that a repository is consistent (assess-

ment criteria).

The  theory  posits  that  given  these  capabilities,  an  assertion  can  be  made  that  a  preservation  environment  is
trustworthy. This model is a very concise framework for understanding the purpose of iRODS, even as the context
has evolved. This model is still compelling in the world of FAIR data, where trustworthiness is a core requirement.

iRODS in federated research environments

The next era of iRODS, which we can all the “federation era”,  was ushered in with the launch of the National
Science Foundation’s DataNet initiative. The DataNet Federation Consortium was one of several DataNet initiatives
funded  by  the  National  Science  Foundation.  DFC focused  on  the  iRODS platform as  the  foundation  for  data
federation. The DataNet Federation Consortium (DFC) retained the archival/repository view of the data grid and
added multi-disciplinary sharing of scientific research data via federation mechanisms as a transformative element.
DataNet identified functional areas that should be addressed in cyberinfrastructure for multi-disciplinary data-driven
science. These areas were [3]:

1. data deposition, acquisition and ingestion, 
2. metadata/ontology management, 
3. data security, 
4. data integration and interoperability, 
5. data analysis and visualization.

DFC built on the notion of preservation capabilities and management policies from the data repository era and
extended these concepts in a federation as means to automate many of the necessary tasks to serve the DataNet
functional  areas.  DFC demonstrated  that  capabilities  like  indexing,  publication,  and  data  processing  could  be
included in the scope of policy based data management [4]. 

In the DFC federation, multiple zones under different administrative control could be linked together, data could be
shared between collaborators,  and management  policies  could be enforced  at  each storage location. The policy
managed  framework  in  the  context  of  a  federated  environment  was  extended  further  as  a  means  to  automate
scientific  workflows,  including  the  segmentation  of  workflow  operations  such  that  these  operations  could  be
distributed among different parts of the federation. Moore and Rajasekar did acknowledge that more loosely coupled
workflows would also be required, and interestingly proposed the capability to characterize the operations of a
workflow, including the data management policies that were activated via a vocabulary as an aid to reproducibility.
The authors made a prescient observation that the federation’s policy capabilities, including the possibility to stage a
task at an appropriate storage resource, could work in tandem with loosely coupled workflows, saying “this style of
integration of processing pipelines with collection-based data management is expected to become the basis for data-
driven research”.
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iRODS in disaggregated environments

We observe that iRODS is moving into a third era, and recent experiences at NIEHS reinforces this notion. We view
this through the lens of our own data management challenges in Environmental Health Science. As we moved from
the data preservation era to the federated data collaboration era, we saw that the “Theory of Digital Preservation”
and the policy-based data management approach remained at the heart of the matter and this continues to be the
case. The policy-based data management conceptual frameworks still apply and can help keep iRODS relevant. 

There are several forces that characterize what we will call the “disaggregated environments” era. These are:

 The breaking of tightly coupled federation, replaced with multi-platform standards,
 The emphasis on highly structured data models, 
 The focus on data associated with publications, with attendant focus on reproducibility and provenance,
 Cloud architectures and distributed data pipelines,
 The rise of containers and standard workflow languages,
 The requirement to manage sensitive data and honor data usage agreements.

The breaking of tightly coupled federation

As outlined above, iRODS has its roots in digital preservation and archiving. A data grid was a zone of control that
provided a global logical  namespace  over multiple storage resources.  In  the federation era  the focus shifted to
federated zones representing multiple institutions, where iRODS still was the ultimate technology stack and policy
and automation were largely under iRODS control.  Federation remains a powerful  mechanism for data sharing
across collaborating institutions, however the data management challenges now extend far beyond the federation
boundary.

In the NIH Strategic Plan for Data Science  [5], much attention is paid to what is called the “biomedical research
data-resource ecosystem”. The strategic plan notes that there is a proliferation of repositories, including institutional
repositories external to NIH, along with data repositories run by the various branches of NIH. In addition, there are
multiple specialized repositories where subsets of research data are deposited. For example, a study may produce
gene expression data, which is to be deposited into GEO, the Gene Expression Omnibus [6], while also producing
sequencing  data  to  be submitted  into the Sequence  Read Archive  [7].  Meanwhile,  data  sets  associated  with a
publication may end up deposited in a general repository, resulting in a patchwork of repositories associated with a
study, publication, or research question. A great illustration of the problem is the existence of a guide to the diverse
ecosystem of generalist and specific repositories relevant to biomedical research at NIH produced by the National
Library  of  Medicine  [8],  currently  populated  with 66 entries  for  domain-specific  repositories  and  a half-dozen
generalist  repositories.  It  is  evident  that  federation  models  explored  in  the  DFC era  will  not  apply  in  such  a
fragmented ecosystem. 

In  response  to  this,  iRODS  should  refine  the  policy-based  data  management  philosophy,  elevating  policy
management in two areas. First, the expansion of support for policy management of metadata is required, making
metadata  management  a  first-class  concern.  In  this  new  era,  especially  as  there  is  a  greater  focus  on  data
harmonization and the employment of standard vocabularies and common data elements, policy-based management
approaches can strengthen iRODS ability to serve as the canonical data and metadata preservation and management
environment. Management policies can help maintain and validate metadata standards and automate many of the
ingest  and  transformation  tasks  that  underlie  distribution of  data  to  a  network  of  loosely-coupled  repositories.
Second, the focus on policies as a means to automate tasks like indexing and publishing make iRODS an attractive
solution  for  creating  data  coordination  and  data  submission  nodes  that  manage  distribution  while  maintaining
metadata that can link distributed data together.
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The policy approach is well suited to the requirements of a canonical repository of data and associated metadata
with a focus on metadata acquisition and quality control. In the NIEHS case this emphasizes the use of standard
controlled vocabularies for curation and validation. Upstream data collection from sample and project submission
along with the ingestion of data from laboratory information management (LIMS) systems and analysis workflows
provides  much-needed  data  curation.  Policy-based  metadata  management  enables  researchers  to  generate  valid
submissions to various general and specific repositories, and NIEHS is currently providing tools for publishing to
GEO (Gene Expression Omnibus).  If  iRODS can play a role in mediating data submissions,  it  can then retain
accession information and pointers to various repositories where data is deposited, enabling FAIR data discovery
across disaggregated storage locations. The COPO project [9] describes a data submission brokering service with a
similar design goal. COPO provides general metadata curation tools, applying community developed vocabularies
and  ontologies  for  curation  and  validation  and  then  uses  these  metadata  to  broker  data  submissions  to  target
repositories. Instrumenting these publishing and distribution tasks allows foldback of additional metadata curation as
well as allows establishment of links between source datasets and publications and analysis data sets in external
repositories. This can aid in later cross-repository searching.

The emphasis on highly structured data models

The NIH has placed an emphasis on Common Data Elements (CDEs) as an important enabler for FAIR data sharing
in a highly distributed data ecosystem. Rubenstein and McInnes [10] observed that:

One of the main obstacles to advancing biomedical research is the inability to
exchange and share data and knowledge. This is the result of: data collected

using different terminologies, databases being established with lack of interop-
erability and with no linkage between them, negative results and lessons

learned not being shared, and resources (including funding and patient popu-
lation) being used in duplicated efforts with no coordination and collabora-

tion.

To this end, NIEHS has convened an Environmental Language Health Collaborative to bring together interested
parties  to  “advance  community  development  and  application  of  a  harmonized  language  for  describing
Environmental  Health  Science  (EHS)  research”  [11].  The  development  of  CDEs  and  community  developed
ontologies and controlled vocabularies improves interoperability.

While the curation and validation of metadata using vocabularies and ontologies is critical, the data model of the
repository itself and the relations between objects is equally important. For example,  the Gen3 Data Commons
explicitly build a commons architecture on highly structured data model, represented as a graph, and with services
for indexing, submitting data, and searching the graph representation for data objects of interest [12, p. 3]. One of
the base assumptions in Gen3 is that there are multiple commons connected by a core set of API and services. This
is described as a “narrow middle” architecture  [13]. These services include indexing and search capabilities and
these capabilities are explicitly built around a structured data model. In the view of Grossman, this deep metadata
model is  one of  the differentiating factors  between a “data commons” and a “data lake”,  where a  data lake is
characterized as “when data are stored simply with digital IDs and metadata (shallow indexing), but without a data
model” [14]. This data lake versus data commons distinction is important to weigh as metadata capabilities, such as
metadata templates are being considered by the iRODS Consortium [15]. While the initial discussions are on flat
schema for metadata,  it  is a matter to consider whether  iRODS would need to support graph-like structures,  or
whether the platform would rather delegate this level of sophistication to an external service.
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The focus on data associated with publications, with attendant focus on reproducibility and provenance.

Research data at NIEHS is utilized in many ways, and diverse research outputs are produced and published, ranging
from data  sets  to  reports  to  papers  submitted  to  peer-reviewed  journals.  In  all  disciplines,  there  is  a  definite
movement towards making research data a first-class concern on par with a published paper. When a conclusion or
figure is presented in a scientific publication, the ability to cite the original data and to show how a conclusion or
figure  can  be  reproduced  is  now  a  requirement.  Force11  has  published  a  Joint  Declaration  of  Data  Citation
Principals that captures this new reality [16], observing that “data must be accorded due importance in the practice
of scholarship and in the enduring scholarly record. In other words, data should be considered legitimate, citable
products of research. Data citation, like the citation of other evidence and sources, is good research practice and is
part of the scholarly ecosystem supporting data reuse.” Viewed through the policy lens, these Force11 data citation
principles fit well in the data lifecycle framework described by Moore and Rajasekar, where they observed that each
stage of  the research data lifecycle  was governed  by an explicit  set  of  policies that  represented a “community
consensus on data sharing” [17]. The notion that iRODS can provide automation and policy control for management
of  research  data  sets  at  the  publication  side  of  the  data  lifecycle  can  in  turn  expand the  sphere  of  control  of
management policies into the distribution and publication functions, expanding the scope of metadata and allowing
better determination of the authenticity and reproducibility of research results, all the way back to the original data
sets.

There are several challenges in the reproducibility aspects of FAIR that NIEHS is experiencing. Our data generation
strategy is currently very fragmented. With the gradual formalization of data management at the Lab Information
Management  System (LIMS) level  there are opportunities to extract  metadata related to the various assays and
procedures that were carried out. The Office of Data Science at NIEHS is championing efforts to formalize the
vocabularies used to describe samples and assays and data handling in order to improve the upstream metadata
quality. Data analysis (mapping to and updating the “Data Processing Pipeline” stage in the data lifecycle) is an area
of difficulty,  as the workflows and procedures used to analyze data are often detached from the control of any
machine-actionable policies. There are three strategies we are focused on:

 Championing the use of notebooks as a way of capturing analysis,
 Championing the use of standard workflow languages and containerization to capture pipelines in detail,
 Considering aids and tooling for data submission for publication and to repositories as a way to capture 

links between publications and the source data.

Each of these strategies do not automatically establish the “R” in fair, however, they do present opportunities to
improve the daily experience of analysts and researchers, improve the ability to share and record analysis steps for
day-to-day work, and finally to instrument the analysis process for improved metadata and provenance capture. For
example,  Samuel et  al.  found that  employing Jupyter  notebooks enhanced  the provenance  capture for  machine
learning based analysis  [18]. As we will note in our discussion of the rise of containers and standard workflow
languages,  the enhancements to portability, the ability to share or utilize best-practices pipelines, as well as the
provenance and reproducibility benefits  are significant.  We saw in the COPO model how the publishing phase
presents  opportunities  for  management  policies  to  gather  provenance  information.  Expanding  the  ability  of
management policies to “see” activities and to gather metadata about processes and provenance can lead to better
reproducibility of research results.
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Figure 1. The research data lifecycle and relevant policies, from [17]

Cloud architectures and distributed data pipelines

One of  the biggest  disrupters  to  data  management  has  been  the rise  of  the cloud.  While  there  are  compelling
capabilities in iRODS to connect to and manage cloud storage, there are also new challenges and opportunities in
extending  iRODS as  a  part  of  the  broader  architecture  beyond storage.  The notion of  federation  is  present  in
discussions about cloud-based analysis but federation in these disaggregated environments is quite different, more
along the lines of the “narrow middle” architecture with a sparse set of services that link otherwise independent
environments. NIH, in their strategic planning, has identified several focus areas, including establishing researcher
identity, managing data usage agreements, running computational tasks across multiple endpoints while enforcing
fine grained authentication/authorization across multiple cloud providers as areas  of concern.  Each of these are
natural areas where policy-based data management concepts can play a significant role. 

It is the ability to rapidly scale to run complex analysis, taking advantage of the compute power and available tools,
that  is  driving  the  migration  of  biomedical  science  to  the  cloud.  The  National  Institutes  of  Health  (NIH)
acknowledged this  migration in its  original  data commons pilot.  The original  pilot  identified many challenges,
including the portability of analysis to multiple cloud architectures, and the importance of minimizing ingress and
egress charges, running an analysis task as close to the data as possible [19]. The Global Alliance for Genomics and
Health (GA4GH) has worked to standardize workflows and pipelines, and to achieve the goals of portability and
efficiency through the use of standard workflow languages, along with cloud-neutral data access and task execution
standards  [20].  Using standards  such  as  the  Data  Repository Service  (DRS)  and Workflow Execution  Service
(WES), researchers have been able to demonstrate qualities of a federated data ecosystem [21]. 
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The iRODS Consortium has considered “data-to-compute” and “compute-to-data” as general platform capabilities.
Platforms such as CyVerse Discovery Environment have made great strides in providing “bring-your-own-compute”
to their researcher community  [22]. Strategies for iRODS to enable of these narrow-middle services and support
emerging standards and conventions to support distributed analysis are a rich area for exploration. There has been
prior work using iRODS to support distributed analysis on cloud platforms under the umbrella of the original NIH
Data Commons Pilot as well as under the sciDAS program [23] which demonstrated the ability to distribute tasks
based on a calculation of performance and cost factors. This work parallels many of qualities of the current GA4GH
federated analysis projects, including the Task Execution Service (TES) [24]. These examples show that there may
be multiple ways that iRODS could serve as a platform for distributed data pipelines.

The rise of containers and standard workflow languages

In large part, the ability to run pipelines and analysis in distributed environments relies on the use of containers such
as Docker or Singularity. The CyVerse Discovery Environment is a great example within the iRODS Community,
where researchers can create and containerize tools, annotate them, and add them into the research environment to
run and share. Repositories such as BioContainers [25] and Dockstore [26] allow researchers to share containerized
tools and workflows written in standard workflow languages such as CWL [27] and NextFlow [28]. The portability
and reproducibility  of  containers  is  well  understood.  Formalizations for  running containerized  tasks  on data at
remote storage locations (as CyVerse does to some extent) using standard TES-compliant interfaces may be an
interesting and beneficial capability.

The requirement to manage sensitive data and honor data usage agreements

If iRODS and policy-based data management have any intersection with capabilities that are desired in the proposed
NIH Data Commons architecture, they would intersect with the need for fine-grained and dynamic decisions on data
access. Efforts are underway to develop ontologies that can describe data usage , as well as standard systems, built
on existing standards such as OpenID Connect and OAuth, for identifying researchers. There are efforts at NIH and
at GA4GH to create something akin to a data passport. This system was described by Cabili et al [29] as a “Library
Card”:

A Library Card would encode identity and other attributes of a researcher as a
set of standardized claims. For example, institutional affiliation may be

recorded in a claim, along with a level of assurance regarding the claim: (a)
self-assertion (b) institutional email (c) proof of support of the claim by an au-
thorized third party within the institution. These claims, and others like them,

are recorded by the Library Card issuer and provided over secure protocols to
relying parties who will in turn make access decisions based upon these claims

iRODS policies and the ability to make decisions based on role, status, or dynamic factors such as acknowledgment
of terms or data usage agreements would be a natural area to investigate, especially were iRODS is mediating access
to research data sets. NIEHS did demonstrate a Data Repository Service (DRS) implementation that can run on
native  iRODS  [30,  p.].  This  DRS implementation  does have,  in  later  planned iterations,  the ability  to  provide
GA4GH Data Passports  [31] that can provide a framework for exploring how iRODS policies can interact with
GA4GH Data Passports.
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CONCLUSIONS

This paper observes that a third “era” of policy-based data management has arrived, driven by the disaggregated
nature of repositories, the rise of the cloud, and the need to create federations across disparate systems for data-
driven  science.  The capabilities  demonstrated  and  developed in prior  eras  of  iRODS of  have  not  disappeared.
However,  the  challenge  and  opportunity  presents  itself  to  build  upon  the  success  of  the  policy-based  data
management model and the core capabilities in the iRODS platform and learn how they apply and can advance the
platform in this new federation era.
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