
iRODS Logical LockingiRODS Logical Locking

Alan King
Software Developer
iRODS Consortium

June 8-11, 2021
iRODS User Group Meeting 2021

Virtual Event

1



...but first, a story

Why did it take so long?

 - 2019: The Missing Link

   - 

 - 2020: Logical Locking

   - 

 - 2021: Logical locking is real, but we had to change

everything inside

https://slides.com/irods/ugm2019-technology-update#/9

https://slides.com/irods/ugm2020-technology-update#/12

2

https://slides.com/irods/ugm2019-technology-update#/9
https://slides.com/irods/ugm2020-technology-update#/12


What is a Data Object? What is a Replica?

Data Object: a logical
representation of data that
maps to one or more
physical instances (Replicas)
of the data at rest in Storage
Resources

 

Replica: an identical,
physical copy of a Data
Object

3



iRODS supports a POSIX-like interface for opening, writing, and closing.

Every data movement operation in iRODS boils down to:

Open replica, move data to replica, close replica

Most users deal with high-level APIs (put, cp, repl, etc.) which are built

using these lower-level APIs.

Policy can be invoked as a result of an operation which can and often is

itself a data-moving operation.

How do we create and modify data in iRODS?

4



Truth: The latest data known to be "correct"; or, how the data "should" be

Replica status: The state of the data as it relates to the physical storage, the
catalog, and the Truth

Good: Data is at rest, matches the catalog, and reflects the Truth

Stale: Data is at rest, but does not meet all criteria for being Good
 - It may not match what is in the catalog: data transfer errors, mismatched
checksum, corruption, etc.
 - It may not reflect the Truth (anymore): more-recently-written data
understood as being correct exist (may or may not differ!)
 - Note: stale does not necessarily mean the data are incorrect, it is just at least
not known to reflect the Truth

How do we define the state of data? What is Truth?

5



Why Locking? Concurrency in a Distributed System

Uncoordinated, concurrent writing to a single replica can lead
to data corruption.

 
Uncoordinated, concurrent writing to multiple replicas of the
same data object causes truth corruption.
 
Uncoordinated, concurrent operation execution can lead to
policy violations.

 
All of these things endanger our understanding of the state
of the data, which is how we know that our data is stored and
cataloged safely.

6



Example: iput

7



Data Corruption: Intermediate Replicas

Uncoordinated, concurrent writing to a single replica can lead to data corruption.

 
Problem: In-flight replicas can be opened and modified
concurrently by multiple agents in an uncoordinated fashion,
and the catalog does not reflect the current, true state of the
data.
 
Solution: Mark in-flight replicas as intermediate at open time
and update the status at close to reflect the state of the replica
 - Status of the replica is accurately represented in the catalog
 - The system and users can take appropriate action based on
whether or not the replica is at rest

8



Truth Corruption: Logical Locking

Uncoordinated, concurrent writing to multiple replicas of the same data object causes truth

corruption.

 
Problem: It is unclear which replica for a given data object
represents the Truth when multiple replicas are in flight at the
same time.
 
Solution: Prevent opening any replica for a given data object when
any one of the replicas opened for write.
 - The opened replica is marked intermediate, as shown previously
 - The other replicas are write locked which prevents any
additional opens for read or write; it is clear which replica
represents the Truth

9



Known Limitations/Trade-offs

Maintaining replica information implies catalog round-trips (time):
 - Create: up to 3 (lock object, register replica, close/finalize)
 - Open for write: 2 (lock object, close/finalize)
 
Additional system metadata in the catalog and in memory for in-
flight data (space)
 
What write locks do NOT solve:
 - Database race conditions
 - Protection against rogue administrators
 
Locking is currently scoped by open/close, not by operation

10



Future Work

11



Example: iput to a replication resource hierarchy

12



Policy Violation: Operation Locking (name pending)

Uncoordinated, concurrent operation execution can lead to policy violations.

 
Problem: If a data-modifying operation is impacted by policy
execution which leads to other data-modifying operations,
other concurrent, uncoordinated data-modifying operations
can lead to violations in said policy.
 
Solution: Keep data object locked over the lifetime of any
given data-modifying operation.

13



Problem: Modifying or unlinking objects which are being read.
 
Solution: Extend ILL to allow multi-reader, single-writer access
 
Implementation details:
 - Disallows open for write, unlink, or rename while locked
 - Maintain list of agent PIDs/hostnames holding locks in the catalog
 - Last agent to release lock will be responsible for unlocking the data
object by restoring the replica states
 - Agents need to be more self-aware with respect to locking to avoid
deadlocks (also useful for operation locking); possibly use
irods::replica_access_table

Future Work: Read Locks

14



Future Work: Lock Checker

Problem: Agent holding open descriptors is responsible for
locking/unlocking. Killed agents can leave objects stuck in locked
or intermediate state. Leaves admins to identify and modify
replica states so they can be healed.
 
Solution: Asynchronous server task which checks for locked data
objects and checks to see if the listed agent(s) are still running.
 
Schedules asynchronous unlocking of data objects which are no
longer owned by a living agent.

15



Thanks for listening

16


