
June 8-11, 2021
iRODS User Group Meeting 2021

Virtual Event

Markus Kitsinger
github.com/SwooshyCueb
Software Engineer, iRODS Consortium

1

What

The iCommands you're already familiar with

Packaged up for deployment in locked down environments

Includes all needed libraries

Works without a lot of fuss, just extract and run

Why

It is common for shared systems (such as HPC environments) to be pretty locked
down. Being able to use the iCommands in these environments without jumping
through a bunch of hoops would be incredibly convenient, and is something that
the community has asked for.

iCommands Userspace Packaging - Overview

2

As portable as possible - extract and run with no fuss

iRODS runtime libraries bundled in

Dependency libraries bundled in

No need to set LD_LIBRARY_PATH or other environment variables

We don't want to re-build the universe

Bundle our already built dependency libraries (/opt/irods-externals)

Plus any appropriate distro-provided dependencies

As few extra build dependencies as possible

Goals and Needs

3

A Python 3 script (plus a few modules) invoked by a CMake build target

Produces a tarball specific to the target distribution

for all currently supported distributions

Minor surgery performed on the binaries

Packed into a tarball named appropriately for the target platform

Our Solution - Overview

4

1. Tons of information is passed in from CMake.

2. The Python module search path is augmented to include the scripts
directory from the iRODS source code.

3. Several tools that may be used during the packaging process are
evaluated for availability and usability.

4. A workspace is prepared in the CMakeFiles directory.

Other Details

New CMake install components for iCommands, manpages, and test data.

New CMake build target that builds just the iCommands and does not
create manpages.

Our Solution - Step-by-step - Phase 0: Initial Preparation

5

1. The cmake_install.cmake script for the iCommands build is invoked directly

with CMake variables set to install the iCommands to a temporary prefix.

2. The shell script iCommands are copied directly to the package bin directory.

3. The iCommands binaries are stripped and cleaned, and then copied into a

staging area.

4. Using some information passed in from CMake, the iRODS client auth and

network plugins are located, followed by the iRODS runtime libraries.

5. The plugins and libraries are stripped and cleaned, and then stored in the

staging area.

Our Solution - Step-by-step - Phase 1: Gathering iRODS components

6

Three of the tools evaluated earlier were a standard strip tool, ldd, and the
LIEF Python module.

If a strip tool is not found, this entire process is a no-op.

If a strip tool is found, but LIEF or ldd is not found (or not usable), the second and third
steps of this process do not take place.

1. Unneeded symbols are stripped from the binaries using the strip tool.

2. ldd is used to determine which (if any) libraries that are imported by the binary
are not used.

3. If any imported libraries are found to be unused, their entries are removed from
the binary's dynamic header using LIEF.

This cuts down on the number of dependency libraries that are included in
the final package.

Our Solution - Step-by-step - Strip and clean process

7

There are two kinds of external libraries: iRODS-provided (/opt/irods-externals)
and distro-provided.

In order to help the packager identify which libraries should be included in the
package, a set of directive files is included with the packager:

A file listing the names of iRODS-provided libraries known to potentially exist in the dependency
tree.

A file for each supported distribution (plus one more common to all distributions) listing the full
sonames of distro-provided libraries known to potentially exist in the dependency tree, along with
a mark indicating whether the library is explicitly excluded from the package, or allowed to be
included in the package.

Should an external dependency be identified that is not listed in the directives, the
packager will throw a warning and the library will be excluded from the package.

Our Solution - Step-by-step - Phase 2: Gathering external libraries

8

1. ldd is used to get the locations of all dependency libraries of the gathered
iRODS components.

This gives us the entire dependency tree, so indirect dependencies are included as well.

2. The direct dependencies of the prepared binaries are identified using a readelf
tool (or LIEF, should one not be available).

Any already staged libraries are filtered out, and the results are condensed down to a list of
unique sonames. This list is then filtered against the directives.

3. The results from step 1 are used to get the locations of the libraries from step 2.
These libraries are stripped and cleaned, and then stored in the staging area.

4. Steps 2-4 are repeated for the newly staged libraries until no dependencies
remain.

Our Solution - Step-by-step - Phase 2: Gathering external libraries

9

If LIEF was not found or is not usable, an alternate process is used:

1. ldd is used to get the locations of all dependency libraries of the gathered iRODS components.

This gives us the entire dependency tree, so indirect dependencies are included as well.

2. The list of dependency libraries is filtered against the directives.

3. The filtered libraries are stripped and cleaned, and then stored in the staging area.

Our Solution - Step-by-step - Phase 2: Gathering external libraries - Alternate

10

In order to eliminate the need to set the LD_LIBRARY_PATH environment variable,
we need to set the RUNPATH or RPATH in as many of the binaries as possible.

1. For each staged binary, the relative path from their directory in the package to
the lib directory in the package is derived.

If this path is derived to be . or empty, the packager attempts to set the binary's
RUNPATH/RPATH to $ORIGIN*.
Otherwise, the packager attempts to set the binary's RUNPATH/RPATH to $ORIGIN/* + the
derived relative path

2. The binaries are stored in their package directories.

* $ORIGIN is a substitution string in RUNPATHs and RPATHs for the directory in which the library or executable resides.

Our Solution - Step-by-step - Phase 3: Setting RUNPATH/RPATH

11

The packager has three methods at its disposal for setting the RUNPATH/RPATH of
a binary:

LIEF can set the DF_ORIGIN flag, which helps keep the runtime linker from misbehaving. It
can also add a RUNPATH to a binary that does not arleady have an RUNPATH or RPATH.
However, it can also cause the entire packager to segfault, and has the potential to bungle
up the resultant binaries.

chrpath can change the RPATH dynamic entry to a RUNPATH dynamic entry.

CMake is guaranteed to be available.

The packager will try each available method until one succeeds.
If all fail (or none are avialable), the binary is used as-is.

chrpath is prioritized over CMake. Whether LIEF is given top or bottom priority
depends on a number of variables.

Our Solution - Step-by-step - Phase 3: Setting RUNPATH/RPATH - The Tools

12

At this stage, everything that is to be included in the package has been

placed in a package directory with the final directory structure that is to

appear in the package. The only thing left to do is to actually make the

tarball.

In order to support the most amount of compression formats possible,

the packager will look for a tar tool that automatically compresses

based on output filename.
The package filename and output path can be specified using a CMake variable.

The default compression is gzip, as it is widely supported.

A few extra flags are passed to the tar tool to ensure the tarball is

suitable for a relocatable package.

Our Solution - Step-by-step - Phase 4: Creating Final Package

13

It's multithreaded!
It uses the default number of threads for a python ThreadPoolExecutor, as
getting the parallelization flag passed to the native buildsystem is a super
complicated problem that is way outside the scope of the packager.

It's handy!
The strip_util and runpath_util modules double as functional command
line utilities that can be executed directly if needed.

Other solutions we considered
Conda
Build in container against Alpine Linux or Ubuntu Trusty

Our Solution - Other fun details

14

LIEF
RUNPATH/RPATH shenanigans and the DF_ORIGIN flag
External dependencies

symlinks and linker script files
soname differences between Centos and Ubuntu
OpenSSL
Symbol versioning and GLIBC
Knowing what to bundle and what to exclude

Invocation
Bad path assumptions in iRODS runtime
Python 3.5

Challenges

15

Decrease reliability on LIEF.

Prevent LIEF's segfaults from crashing the whole packager.

Clean out unused library imports with symbol version references.

Move logging instrumentation code into iRODS scripts folder.

Use objdump as an alternative to readelf.

Fix setting RUNPATH/RPATH with CMake on Centos.

Use readelf/objdump to make stripping and RUNPATH/RPATH setting smarter.

Implement support for musl's ldd.

Make library directive syntax rolling-release-friendly.

Linker script file handling.

TODO

16

