iRODS at Bristol Myers Squibb

Overview of Projects. Leveraging iRODS for Scientific Applications in Amazon Cloud

Radha Konduri | Dmitry Khavich
Data Stores & DataOps, R&ED Data Management Platforms
iRODS UGM, Jun 8-10, 2021
It’s all about data, Big Data!

Exponential Growth (Ten's of PB)

- 2016
- 2017
- 2018
- 2019
- 2020
- 2021

Scientific data sets
- NGS data
- Proteomics
- Flow Cytometry
- Imaging data
- High-Throughput screening
- Mass spectrometry
- Databases

Major data sources
- Raw data from labs
- Scratch space
- Results data
- External collaborations
- Public & government agencies
- R&D

Data governance
- 25+ years of retention with Backups

From GB’s to PB’s scale
Lab data challenges

Data accessibility and sharing
- Silos between teams (organizational resistance)
- Image acquisition systems are local, and self contained

Computing power, Networking & storage
- Efficient data exchanges, storage and processing

Replicating results
- Reliability, efficiency, speed, provenance & repeatability for testing & validating

Data mining
- Lack of good metadata annotation
- Image datasets are hard to find, difficult to extract

Data standards & compliancy
- Different formats, data integration and validation

Data Management
- Searching, grouping, updating metadata via UI application
Typical data flow diagram

1. Instruments writes raw data into local scratch space
2. Raw data pushed to S3 by Storage Gateway/DataSync or via AWS CLI S3 commands
3. iRODS system scans S3 buckets regularly via Lambda
4. Applications request data via iRODS metadata catalog
Use case: Lab Data Management for Immuno-Oncology

Immuno-Oncology teams require:

- Diverse, data-rich discovery research in CAR/eTCR discovery, T cell engineering, and preclinical studies.
- Tools and data standards to effectively aggregate data across various assays, track data lineage, and automate the acquisition and movement of instrument data.

The capability has three major components:

1) **Lab Data Hub**, a platform for archiving, and curating raw data;
2) **Data Model**, a model to guide the entry and semantic harmonization of lab data; and
3) **Discovery Work-Bench**, an analysis tool for aggregating data across experiments.

Measures of Success:

Quantitative: Productivity value metrics

Qualitative: Improved decision-making, and risk compliance
Business Process & Solution: Lab Data Hub Architecture

1. **Acquire raw data**
 - Raw Instrument Files
 - Gateway listens for new files
 - S3 bucket
 - CRON JOB

2. **Prepare experiment**
 - Write/copy to I Drive

3. **Access experimental metadata**
 - iRODS indexes new files and stores metadata
 - Research and Analysis Tool
 - File Paths Updated in Experiment Entry

4. **Download raw files**
 - AWS Storage gateway
 - Send new files to Amazon S3
 - Annotate & tag data elements
Business Process : Data Flow

1. BMS Scientific Computing
 - CRON Jobs (in iRODS EC2) to Push data attributes (runID, run URL, Date) for the day as CSV files. Runs every hour and creates datetime folders in ../Extracted/<date> folder.

2. BMS Discovery Bench Dev & Support
 - Query iRODS for distinct Run ID & S3 URLs in the past hour
 - Bulk update POST run folder URIs to custom entities returned by the bulk GET
 - Get Data from S3

3. 3rd Party API
 - Run folder URIs updated in corresponding run entities.
 - Data Hub - Discovery Bench integration
 - Bulk GET custom entities for all Run IDs
 - Basic OR OpenID Connect (OIDC) Authentication

Research and Analysis Tool
Metadata Tagging Requirements

Different ways iRODS extracts the metadata

- Metadata values are extracted from file path in the bucket and file name using regular expression.
- Time of creation/modification and size of the file is parsed from AWS S3 head object response.
- A unique tag for each file is generated using the python hash library for the contents of the file.
- Files like XML, JSON, CSV and TXT are read for setting the metadata for the data objects or collections.

Process of CSV file generation for analysis tool integration

iquery runs every hour against iRODS collection. Obtains distinct combinations of metadata like experiment run ids and run folders that fit the criteria. The CSV file is loaded in the S3 bucket location. The research and analysis tool is configured to read the latest CSV file from S3 bucket. Scientists are able to analyze the data and generate the reports.
Challenges and solutions:

SQS issues:

- Unable to purge stuck messages
- Single SQS queue had messages from all projects
- Purging the queue would purge legit messages of other projects and affect them
- Solution: Separation of SQS queues only by project but also by environment like UAT/prod

Issues generating CVS file:

- Special char in files names - like quotes, percent, parenthesis, spaces and especially commas
- Limitations of iquest arguments: revolved by counting the number of files before creating the argument and grouping arguments by 3000

Performance/tagging issues:

- Improved the throughput of the iRODS delay queue by using a larger instance type and
- Modified the parameter ‘maximum_number_of_concurrent_rule_engine_server_processes’ accordingly.
- Python code modification for tagging empty files.
Use case: Enabling LDO Tissue Imaging and AI

Insert “Plate” with 4 slides, designated as wells A1, A2, A3, and A4

For a specific slide (well), low res scan to locate tissue sample. PreciScan

High resolution imaging of tissue sample

Building Blocks software “stitches” fields together

Each tiny blue square is a field. Each field will have a different image for each color (channel) and for each confocal z-plane

Data Analysis

UNet Machine Learning

Search UI

Generic image of a tissue

On Instrument Computer
 - Scientific Database
 - Scientific Software
Approach to enabling the next generation of data management

Implement the integrated COTS Rule Oriented Data System (iRODS) with petabyte-scale capabilities to automatically ingest imaging and analysis data sets directly from the instruments and analysis tools.

Enable iRODS to automatically ingest, validate, and assign metadata to image datasets and provide provenance.

On top of iRODS, build user friendly interface to provide intelligent search and enable user to request variety of operations on images.

Deploy and integrate with iRODS easy configurable services to enable data analysis pipelines, perform image format conversions, create image montages, and other image manipulation as required.

Medical scanner, microscopes

High content Screening instruments

AIMS

RunDef

iRODS

S3

SARP

ARIA Study

Electronic Lab Notebook ELNB

Image Transformations

HALO

Data Visualization tools

Medical scanner, microscopes

High content Screening instruments

AIMS

RunDef

iRODS

S3

SARP

ARIA Study

Electronic Lab Notebook ELNB

Image Transformations

HALO

Data Visualization tools

Medical scanner, microscopes

High content Screening instruments

AIMS

RunDef

iRODS

S3

SARP

ARIA Study

Electronic Lab Notebook ELNB

Image Transformations

HALO

Data Visualization tools
High level Architecture

Instrument Systems
- Screening instruments
- Scanning instruments
- Future Instrument Platform

Local Storage Layer
- Instrument1 DB
- Instrument2 DB
- Any output format

COTS Common Layer (iRODS)
- Numeric Data Storage
- Vocabularies and Ontologies
- Image Storage
- Metadata Layer

Image Analysis Tools
- Software1
- Software2
- U-Net
- Future Advanced DL (U-Net, Halo, TensorFlow etc.)

File Transformation SaaS
- High Performance, Scalable Image Format Converters and Image Stitching Algorithms

Result Visualization
- Discovery Imaging Platform Components

Metadata Layer
- Experiment Metadata
- Sample Assay Request Portal

Image Storage
- Images

Result Visualization
- Any output format

Numbers
- Discovery
- Imaging Platform Components

Image Acquisition
- Image Management
- Image Analysis
- Results and Reporting

Future Instrument Platform
Model overview for File tagging

4 Data types:
- Instrument1 Original
- Instrument1 Stitched
- Stitched Results
- Instrument2 Original

Tagging Process:
- The dynamic Policy Enforcement Point (PEP) defined in the loaded rulebase file core.py: `pep_api_phy_path_reg_post`
- The rules logic is defined in the PEP function.
- A file gets registered in iRODS
- The core.py triggers and the PEP adds the task to the delay queue.
- The tasks in the delay queue execute.
- Depending on the type of TaggingDetails file, the data type is determined.
- The tagging of files/data objects and folders/collections occurs.
Challenges, solutions & performance optimizations:

Performance issue when searching for files with a specific Attribute values

- Changes in the data model
- Set common tags at the folder/Collection level for easily finding the dataset of interest
- Set file specific tags to the files/DataObject within the Collection.
- The search portal has filters that can be used to search for the specific folders
- Optimized query to search for specific attributes like `DataObjectMeta.name` rather than `DataObjectMeta`.

<table>
<thead>
<tr>
<th>File</th>
<th>Folder</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td></td>
<td>FILE_NAME</td>
</tr>
<tr>
<td>yes</td>
<td></td>
<td>CHANNEL_NAME</td>
</tr>
<tr>
<td>yes</td>
<td></td>
<td>WELL</td>
</tr>
<tr>
<td>yes</td>
<td></td>
<td>FILE_EXTENSION</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>SPECIES</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>PROGRAM_NO</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>SAMPLE_TYPE</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>TISSUE_TYPE</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>THERAPEUTIC_AREA</td>
</tr>
</tbody>
</table>

Performance Metrics *:

Before:
Time to query for 200 specific images when the iRODS catalog had 30,000 files - 25 sec

After:
Time to query for specific folders when the iRODS catalog has approx. 3500 Collections - 12 sec
Time to query for the files in the selected Collection with 4200 files - 8 sec

* The time is response time of the Python REST Service that includes creating a data structure after query to IRODS.
Challenges and solutions:

Performance issue to load Search form with unique values

- DynamoDB table has values populated using a CRON job
- Cron job triggers some services to load the data in the table
- Search portal hits a REST services to query the DynamoDB

Performance Metrics *:
Before:
Time to query for unique values of 6 attributes from iRODS - 24 sec

After:
Time to query for unique values of 6 attributes from DynamoDB - 1 sec

* The time is response time of the Python REST Service
Challenges and solutions (continued):

Performance issue to update existing tags for files in iRODS:

- Filtered the list to contain only the attributes that needed to be updated or newly added.
- iRODS client API function msiModAVUMetdata sets one AVU for a data type or collection per transaction.
- Resolved the performance issue using the atomic remove and add functions from the iRODS client API.
- API now has new function msi_atomic_apply_metadata_operations for atomic add or remove of avus.
- Function takes a json object with list of all avus to add or remove.
- Function also takes a data object or collection to set avus on.
- Removed the existing avus and then added the updated values as new avus.
- Performance improved by 3000 times

Performance Metrics *:

Before:
Time to update 25 attributes for 6 files - 50 min

After:
Time to update 5 attributes and add 20 new avus for 6 files - 1.12 sec

* The time includes the other business logic as well.
iRODS data ingest - standard approach

Challenges

- iRODS catalog is always behind
- Negative space / Deleted files
Near real time data ingest - AWS Lambda function

Data Labs → Amazon S3 bucket → Amazon SNS → Amazon SQS → Amazon Lambda → iRODS Metadata catalog → Application database → Applications
Updating iRODS Catalog with multiple S3 events

Data Lab 1 → S3 bucket 1 → Amazon SQS 1 → Amazon Lambda → iRODS Metadata catalog

Data Lab 2 → S3 bucket 2 → Amazon SQS 2

Data Lab 3 → S3 bucket 3 → Amazon SQS 3 → Amazon CloudWatch

Amazon Systems Manager

Application databases

Data Analysis tools

Applications
iRODS S3 Client AWS Lambda Function

This AWS Lambda function updates an iRODS Catalog with events that occur in multiple S3 buckets. Files created, renamed, or deleted in S3 appear quickly in iRODS.

- Configure trigger on all **ObjectCreated** and **ObjectRemoved** events for a connected S3 bucket.
- Triggers produce messages in AWS SNS/SQS
- Lambda is “listening” to SQS
- The connection information is stored in the Parameter (AWS Systems Manager --> Parameter Store) as a JSON object string.
- SSL Support – also part of **IRODS_ENVIRONMENT_SSM_PARAMETER**
- This Lambda function can be configured to receive events from multiple sources at the same time.
- GitHub repository: https://github.com/irods/irods_client_aws_lambda_s3
- Release 1.2 date: Jul 08, 2020 (Implemented support of multi-part ObjectCreate event)
This AWS Lambda function updates an iRODS Catalog with events that occur in multiple S3 buckets. Files created, renamed, or deleted in S3 appear quickly in iRODS.

- iRODS is assumed to have its associated S3 Storage Resource(s) configured with HOST_MODE = cacheless_attached
- If SQS is involved, it is assumed to be configured with batch_size = 1
- Handler: irods_client_aws_lambda_s3.lambda_handler
- Runtime: Python 3.7
- Environment Variables:
 - IRODS_COLLECTION_PREFIX : /ourZone/home/rods/s3
 - IRODS_ENVIRONMENT_SSM_PARAMETER_NAME : irods_default_environment
 - IRODS_MULTIBUCKET SUFFIX : _s3
Processing Data at Scale and Features

Using iRODS for managing petabytes of data in hundreds of millions of files on distributed storage resources spread across the country.

- Number of S3 buckets: 200+
- Number of objects in S3: 800+ millions
- Size of dataset per zone: ~10+ PB
- Processing rate (regular data ingest): 5 millions objects per hour

Plugins and features

- S3 / EC2
- NFSRODS
- Metalnx
- AWS RDS PostgreSQL r.12 / Trigram indexes
- AWS Lambda functions over SSL
Towards iRODS Data Farm

Global Search Index on top of iRODS Metadata catalog

East - West Coasts Data Federation

East Coast Data Federation:
- East Zone 1
- East Zone 2
- East Zone 3

West Coast Data Federation:
- West Zone 1
- West Zone 2

Scientific groups
Data providers
Data analytics
Data Lake
Applications

East Zone 1, East
Region 1, East
Region 2, East
Region 3, East
Region 4, West
Region 5, West
Thank you

Acknowledgements

- iRODS support team
- iRODS / RENCI
- iRODS UGM conference papers
- Open-source community
- DIP team
- IOCT team

Radha Konduri | Manager, Data Management & Platforms
Email: radha.konduri@bms.com

Dmitry Khavich | iRODS support, Data Management & Platforms
Email: dmitry.khavich@bms.com

Oleg Moiseyenko | Associate Director, Data Management & Platforms
Email: oleg.moiseyenko@bms.com