
iRODS and Observability
Arcot (Raja) Rajasekar

rajasekar@unc.edu

The University of North Carolina
at Chapel Hill

Outline

• Observability
• Current Tracking in iRODS
• Realizing Observability through iRODS
• Q&A

Observability
What is Observability?

• Observability is the ability to understand what is
happening inside of a system from the knowledge of
its external outputs.

• It originates from engineering, particularly from
control theory

• In a dynamic system one can estimate the state of a
system from monitoring
the observables.

• To Observe is to Control

From https://www.devo.com/

Observability in Software System
• Observability helps understand and answer specific

questions about what’s happening in highly distributed
systems

• Observability empowers cross-functional teams (IT Admins,
system developers, application engineers, managers) to
identify problems before they even manifest or become
unmanageable

• Observability enables you to realize what is slow or broken,
and to quickly figure out what needs to be done to improve
performance

• Observability is a measurement that can
pinpoint bottle necks, degrading
performance, improvable usage patterns,
and predict failure.

• Observability helps increase performance,
availability, resiliency and user satisfaction

Observability in Cyber Infrastructure
• With increased use of

– Chaining of Micro-services & Web services
– Multi-party software
– Agile programming
– Automatic updates, bug fixes and service releases
– Containers
– Dynamic Libraries and packages
– Multi-lingual scripts
– Cloud services
– Large networks and diverse hardware
– Distributed computing and storage
– Complex security structures
– Virtual Machines

• Its no longer your grandpa’s slide rule and calculator
• A simple ‘click’ or call can span a large complex software and hardware

conglomerate in milliseconds to deliver the result
• An innocuous update to an obscure package can have a cascading effect
• Finding problems and correcting them can be a nightmare
• Going beyond that, predicting failure and degradation of services can be highly

challenging
• Observability is the name of the game

Observability in Software System

• Observability is the practice of
achieving actionable insights

• The aim is to understand
– When an event or issue

happened
– Why it happened
– Where it happened
– Who or What is responsible
– How to recover

• Hopefully before it happened
– Predict Vs Diagnose

• Monitoring: Data generated by well-
instrumented software systems
provide the clues

• Machine Learning & Data Analytics
are part of the solution

From: https://sciencenotes.org/
steps-scientific-method/

Example Observability Systems
• DataStax

• Grafna Dashboard

Example Observability Systems

 Apache Skywalker

Open Telemetry

Three Pillars of Observability
• Logging: collects information about events happening in the system

and helps find unexpected behavior
• Tracing: collects information to create an end-to-end view of how

transactions are executed in a distributed system. Tracing can
recognize a problem through comparing and contrasting.

• Metrics: provide a real-time indication of how the system is
running. Metrics can be leveraged to build alerts, allowing proactive
reaction to unexpected values From: https://www.humio.com/

Two More Pillars:
Visualization: Visual Cues
for abnormalities
Analytics: Deep analytics to
predict faults, failures and
service degradation

Journey: A User Experience
• Tracings create an end-to-end view of how transactions are

executed in a distributed system. They also capture end-to-
end and inter-service latencies of individual calls in a
distributed journey

• Journey: The sum total of all activities a user performs
during a session. A journey can have multiple sub-journeys.
Each journey can be made of several paths which can be
parallel in a distributed system.

• A journey captures timings, possibly call and return
expressions, status code and anything else that an Observer
deems to be necessary.

• Journey can be abstracted into templates and help find
bottlenecks and errors so they can be fixed and optimized.

From: https://www. newrelic.com/

Observability in iRODS: Current Status
• Server Logs: collects information about system events and error

messages happening in the system. Can be used to find unexpected
behavior (distributed)

• Audit Trails: collects user-defined information on triggered action.
Can be used to recreate traces that are executed across distributed
iRODS servers (centralized).

• Status Metadata: Can store persistent information that can help for
further metrics (centralized)

iRODS is currently
supportive more
towards Monitoring
activities than towards
Observability.

From: https://ish-ar.io/observability/

Observability in iRODS
• Towards better performance with proactive

metrics & analysis:
– Help iRODS become better and more

pro-active in maintaining performance
– Help systems that use iRODS to apply

iRODS observability metrics to become
better and pro-active in maintaining
performance

• Server Logs, Audit Trails and Status
Metadata in iRODS provide a strong and
stable foundation for performing
Observability.

• Use of policies, rules and microservices
provide one more level for gaining
information to perform observability

• Missing: Metrics, Journeys, Visualization and
Analytics

iRODS Observability: Metrics
• Application Performance Monitoring (APM): To check whether the system

satisfies the SLA contracts, meets performance standards, identify bugs and
potential issues, and provide flawless user experiences via close monitoring of IT
resources.

• Reduce MTTR (Mean Time To Resolution)
• Continuous Monitoring towards Proactive Remediation
• Alerts and Simple Analysis
• Metrics: What can we monitor in iRODS (not a comprehensive list)

• CPU/Memory Usage
• Network Traffic
• Database Load
• Error Types/Rates
• Request rates
• Response times (mean, max, min)
• Bandwidth/Throughput

• Concurrent Connections
• Number of instances/threads
• Microservice/function usage/time

• Uptime, Restarts & Availability
• User Experience (happy faces)
• Other Software KPIs

iRODS Observability: Journeys
• Distributed Tracing (DT): Chaining of services and peer-to-peer

connections across distributed systems makes it hard to trace the
activities of a session but is critical for performance monitoring.

• DT helps identify bottlenecks across dynamic and heterogenous
infrastructures

• Journeys: Session level performance analysis and monitoring
– Distributed Transaction Monitoring and Analysis
– Create User or Application Profiles
– Define Patterns and Templates of Journeys and Sub-journeys
– Latency optimization
– Failure Models – Alternate Pathways
– Service Dependency Analysis
– Critical Path Analysis
– Root Cause Analysis

iRODS Observability: Analytics
• Predictive Analytics: What is likely to happen?
• Descriptive & Diagnostic Analytics: What happened and why it

happened?
• Prescriptive Analytics: How can we avoid that happening?

Some Examples
• Statistical Analytics: Analyze metrics data for informative nuggets. Max,

Min, Median, Mean, StdDev, etc. provide insights. Can be used to define
norms, SLAs and expected outcomes and latencies

• Graph Analytics: Use traces and journeys to find patterns. Pattern
analysis. Critical nodes and Most used nodes. Candidates for
improvements. Pre-staging and pre-processing options.

• Text Analytics: Contextual data of journey to define dynamic slicing and
define repeatable experiences.

• Machine Learning: Learn good and bad patterns. Successful journeys and
failed journeys.

• …

From: https://www.oreilly.com/

iRODS Observability: Visualization

From: https://www.oreilly.com/

A System Administrator’s Dream

iRODS and Observability
• Observability is becoming important because of complexities of the applications as well

as need for high availability and throughput by the user community
• Observability can be used as a means to monitor the system continuously and, if

possible, correct them on the fly
• Observability can also provide insight to developers on how performance can be

improved
• Observability in iRODS

– Multiple assets already available in iRODS: server logs, audit trails, metadata
– Other assets we haven’t leveraged yet: policies, rules, micro-services

• There is a clear need for Observability in iRODS
– Metrics can be improved
– Journeys can help in making user experience better
– Analytics can help find problems before they occur
– Visualization can help developers and administrators with visual cues and human analytics

• Good idea to think about when we already do enterprise level applications

Observability & iRODS

Q & A
rajasekar@unc.edu

	Slide Number 1
	Outline
	Observability
	Observability in Software System
	Observability in Cyber Infrastructure
	Observability in Software System
	Example Observability Systems
	Example Observability Systems
	Three Pillars of Observability
	Journey: A User Experience
	Observability in iRODS: Current Status
	Observability in iRODS
	iRODS Observability: Metrics
	iRODS Observability: Journeys
	iRODS Observability: Analytics
	iRODS Observability: Visualization
	iRODS and Observability
	Slide Number 18

