=

IRODS and Observability

Arcot (Raja) Rajasekar
rajasekar@unc.edu

The University of North Carolina
at Chapel Hill

of NORTH CAROLINA
at CHAPEL HILL

Outline

Observability

Current Tracking in iRODS
Realizing Observability through iRODS
Q&A

Observability

What is Observability?

Observability is the ability to understand what is
happening inside of a system from the knowledge of
its external outputs.

It originates from engineering, particularly from
control theory

In a dynamic system one can estimate the state of a
system from monitoring
the observables.

To Observe is to Control

From https://www.devo.com/

Observability in Software System

Observability helps understand and answer specific
qguestions about what’s happening in highly distributed
systems

Observability empowers cross-functional teams (IT Admins,
system developers, application engineers, managers) to
identify problems before they even manifest or become
unmanageable

Observability enables you to realize what is slow or broken,
and to quickly figure out what needs to be done to improve
performance

Observability is a measurement that can)

pinpoint bottle necks, degrading N §
performance, improvable usage patterns, . %=

and predict failure. (Cleoald Ve \J
Observability helps increase performance, — < . 2/

availability, resiliency and user satisfaction

Observability in Cyber Infrastructure

* With increased use of
— Chaining of Micro-services & Web services
— Multi-party software
— Agile programming
— Automatic updates, bug fixes and service releases
— Containers
— Dynamic Libraries and packages
— Multi-lingual scripts
— Cloud services
— Large networks and diverse hardware
— Distributed computing and storage
— Complex security structures
— Virtual Machines

* Its no longer your grandpa’s slide rule and calculator
www.shutterstock.com - 55335670

 Asimple ‘click’ or call can span a large complex software and hardware
conglomerate in milliseconds to deliver the result

 Aninnocuous update to an obscure package can have a cascading effect
* Finding problems and correcting them can be a nightmare

* Going beyond that, predicting failure and degradation of services can be highly
challenging

e Observability is the name of the game

Observability in Software System

Observability is the practice of
achieving actionable insights

The aim is to understand

— When an event or issue
happened

— Why it happened

— Where it happened

— Who or What is responsible
— How to recover

Hopefully before it happened

— Predict Vs Diagnose
Monitoring: Data generated by well-

instrumented software systems
provide the clues

Machine Learning & Data Analytics
are part of the solution

TEST HYPOTHESIS

Accept or reject hypothesis

DRAW CONCLUSIONS

Make conclusions based on hypothesis |

Share your results

From: https://sciencenotes.org/
steps-scientific-method/

Example Observability Systems

e DataStax

DATASTAX NEWCLUSTER | ALERTS @) | seTTINGS

@ prod3: Dashboard — DststxEntsprss sever 470 Al agents comnactes

~|(ammru [) o [misoszi - i [

Wit Roquest Latency t 20.134 malop - machinel

3 Free: 2008 Totak 997 GB

60 0160 nodes

" rr . 3 e a1 3] e

8 Cluater fAvy) 5 Ghuster (Avg) 08: CPU Steat vy I0S: CPU owatt (i) 8 Gluater (Tot) 8 Cluntr tAvs)

8 Lokiv2 Web Analytics Dashboard R TR R HTTP requests

appeletrudel
~KPls

Total requests st 24 bours Requestsper staws code - % of S requests o

Users ight now

ties right now 78 i

= g
®

~Roquest statistics over time

95t percantie of Request Time HITP requests

Example Observability Systems

FTace ~Profle Blog OAlm Auto (s Oreload

oint Name

QClear | @ Search More ~

. R oo [oo 20007 20:3 ~ w007 2248
RERN Please add a tag Configuration Vocabulary page @

¢ /projectA/{name} View Logs
projectA/test 84f 99df- 029-9a8eld 64 v
Start PUSRURVPIEEAEN Duration R Spans B

/projectA/{name}

(0 systemcioad balancert. | [© systemoad balancer? | [O business-zone:projecta

.~ € Apache Skywalker

[projectA/test

! /projectA/test

[projectA/test

Jproject/test

proje

Altest 3 /projectA/test

/projectA/test
[projectA/{name}

JprojectA/{name}

IprojectA/test

5371 ms 8 /projectB/test

projectA/{name}

5370 ms o /projectB/{value}

test.skywalking springcloud.test project...

e H2/JDBI/PreparedStatement/execute
JprojectA/tes ° —
5345 ms

selectUser

JprojectA/test |

2021-02-07 20:33 ~ 2021-02-07 20:48 En Server Zone UTC +0

Extensions: health, pprof, zpages

Open Telemetry > -~ -~

OTLP 2 OTLP

Batch cen Attributes

g LF processors it

Jaeger Jaeger

Batch S Filter

Prometheus Prometheus
@} Processors

Three Pillars of Observability

Logging: collects information about events happening in the system
and helps find unexpected behavior

Tracing: collects information to create an end-to-end view of how
transactions are executed in a distributed system. Tracing can
recognize a problem through comparing and contrasting.

Metrics: provide a real-time indication of how the system is
running. Metrics can be leveraged to build alerts, allowing proactive

reaction to unexpected values

Low
volume

Two More Pillars:
Visualization: Visual Cues
for abnormalities
Analytics: Deep analytics to
predict faults, failures and
service degradation

High
volume

v

From: https://www.humio.com/

Request-scoped metrics

Metrics
Aggregatable

Tracing
Request
scoped

Aggregatable events
e.g. rollups

. Request-scoped,
Loggmg aggregatable events

Request-scoped events Events

Journey: A User Experience

Tracings create an end-to-end view of how transactions are
executed in a distributed system. They also capture end-to-
end and inter-service latencies of individual calls in a
distributed journey

Journey: The sum total of all activities a user performs
during a session. A journey can have multiple sub-journeys.
Each journey can be made of several paths which can be
parallel in a distributed system.

A journey captures timings, possibly call and return
expressions, status code and anything else that an Observer
deems to be necessary.

Journey can be abstracted into templates and help find
bottlenecks and errors so they can be fixed and optimized.

'E_

From: https://www. newrelic.com/

Observability in iRODS: Current Status

* Server Logs: collects information about system events and error
messages happening in the system. Can be used to find unexpected
behavior (distributed)

e Audit Trails: collects user-defined information on triggered action.
Can be used to recreate traces that are executed across distributed
iRODS servers (centralized).

» Status Metadata: Can store persistent information that can help for
further metrics (centralized)

-
Monitoring
reactive
activities than towards T
S0 Dependency analysis
Observability.

iRODS is currently
supportive more
towards Monitoring

proactive

From: https://ish-ar.io/observability/

Observability in iRODS

Towards better performance with proactive
metrics & analysis:

— Help iRODS become better and more

pro-active in maintaining performance 9 e

— Help systems that use iRODS to apply Automated Storage

iIRODS observability metrics to become 6 Ingest Tiering @
better and pro-active in maintaining

Indexin . Compliance
performance g 0DS P
Server Logs, Audit Trails and Status CAPABILITIES
Metadata in iRODS provide a strong and % e
stable foundation for performing Auditing Publishing
Observability. @ %
Use of policies, rules and microservices

Integrity Provenance

provide one more level for gaining
information to perform observability

Missing: Metrics, Journeys, Visualization and
Analytics

IRODS Observability: Metrics

e Application Performance Monitoring (APM): To check whether the system
satisfies the SLA contracts, meets performance standards, identify bugs and
potential issues, and provide flawless user experiences via close monitoring of IT
resources.

* Reduce MTTR (Mean Time To Resolution)

e Continuous Monitoring towards Proactive Remediation

e Alerts and Simple Analysis

* Metrics: What can we monitor in iRODS (not a comprehensive list)

* CPU/Memory Usage * Concurrent Connections

* Network Traffic Number of instances/threads
 Database Load * Microservice/function usage/time
* Error Types/Rates

* Request rates * Uptime, Restarts & Availability

* Response times (mean, max, min) ¢ User Experience (happy faces)
e Other Software KPIs

UNIFIED MNUANMESPOSGCE

T 131331313313 —————— e__ .
EEEEEaEEaEER o e
-
- = = — e ——
— y = = E—
v‘_
EEEEEEEEE _—
1T 1T 11 311311 ——————
i AR R O RG AN Z AT 1O H

IRODS Observability: Journeys

Distributed Tracing (DT): Chaining of services and peer-to-peer
connections across distributed systems makes it hard to trace the
activities of a session but is critical for performance monitoring.

DT helps identify bottlenecks across dynamic and heterogenous
infrastructures

Journeys: Session level performance analysis and monitoring
— Distributed Transaction Monitoring and Analysis
— Create User or Application Profiles
— Define Patterns and Templates of Journeys and Sub-journeys
— Latency optimization
— Failure Models — Alternate Pathways
_ Service Dependency Analysis e T Ty
— Critical Path Analysis = =
— Root Cause Analysis -

DATA SOURCES
BEBEBRBREE,
EEEEEREEE
EEEEEEEER

YOUR ORGANIZATION

IRODS Observability: Analytics

Predictive Analytics: What is likely to happen?

Descriptive & Diagnostic Analytics: What happened and why it
happened?

Prescriptive Analytics: How can we avoid that happening?
Some Examples
Statistical Analytics: Analyze metrics data for informative nuggets. Max,

Min, Median, Mean, StdDey, etc. provide insights. Can be used to define
norms, SLAs and expected outcomes and latencies

Graph Analytics: Use traces and journeys to find patterns. Pattern
analysis. Critical nodes and Most used nodes. Candidates for
improvements. Pre-staging and pre-processing options.

Text Analytics: Contextual data of journey to define dynamic slicing and
define repeatable experiences.

Machine Learning: Learn good and bad patterns. Successful journeys and

failed journeys. 3 Request from start 1o A
AV°®
' age 3
We “ﬁ‘%
£ ac®
s e S“t%
t‘\ From: https://www.oreilly.com/

IRODS Observability: Visualization

A System Administrator’s Dream

88 Stats Overview -

Memory / CPU ~ logins @ timeshift-1h Sign ups

Logouts Sign outs

14:30 14:40 14:50 15:00 13:20 13:30

== logins logins (-1 hour)

server requests client side full page load

14:20 14:25 14:30 14:35 14:40

== web_server_ 01 == web_server_02 web_server_03 web_server_04 14:20 14:30 14:40 14:50 15:00 1510

=]
GB

sda10 sdal1 sda12 sda13 sdal4 sdals sdal6

From: https://www.oreilly.com/

IRODS and Observability

Observability is becoming important because of complexities of the applications as well
as need for high availability and throughput by the user community

Observability can be used as a means to monitor the system continuously and, if
possible, correct them on the fly

Observability can also provide insight to developers on how performance can be
improved

Observability in iRODS

— Multiple assets already available in iRODS: server logs, audit trails, metadata
— Other assets we haven’t leveraged yet: policies, rules, micro-services
There is a clear need for Observability in iRODS
— Metrics can be improved
— Journeys can help in making user experience better
— Analytics can help find problems before they occur
— Visualization can help developers and administrators with visual cues and human analytics

Good idea to think about when we already do enterprise level applications

et
pett .y
eeds 4 |
- e UNIFIED NAMESPACE
1 b‘e rQS“‘ m suppo DATA SOURCES —
1, rel1a° gyste > =
sc a‘ab a aPt‘V e

N
=

H
FEDERATE
SECURELY
:
:

OTHER
ORGANIZATION

Observability & iRODS

Q&A

rajasekar@unc.edu

	Slide Number 1
	Outline
	Observability
	Observability in Software System
	Observability in Cyber Infrastructure
	Observability in Software System
	Example Observability Systems
	Example Observability Systems
	Three Pillars of Observability
	Journey: A User Experience
	Observability in iRODS: Current Status
	Observability in iRODS
	iRODS Observability: Metrics
	iRODS Observability: Journeys
	iRODS Observability: Analytics
	iRODS Observability: Visualization
	iRODS and Observability
	Slide Number 18

