
Technology UpdateTechnology Update

Terrell Russell, Ph.D.
@terrellrussell
Chief Technologist, iRODS Consortium

June 8-11, 2021
iRODS User Group Meeting 2021

Virtual Event

1



Philosophical Drivers

Plugin Architecture
core is generic - protocol, api, bookkeeping
plugins are specific
policy composition

Modern core libraries
standardized interfaces
refactor iRODS internals

ease of (re)use
fewer bugs

 
Replicas as first class entities

logical locking
 

Consolidation of data movement
dstreams all on 1247, no more high ports

 
Configuration, Not Code

2



In The Last Year

iRODS Release Issues Closed

4.2.9 314

~/irods $ $ git shortlog --summary --numbered 4.2.8..4.2.9 
   129  Kory Draughn 
   125  Alan King 
    35  Markus Kitsinger (SwooshyCueb) 
    22  Terrell Russell 
     9  d-w-moore 
     8  Justin James 
     5  Jason Coposky 
     2  Ilari Korhonen 
     1  Martin Pollard 
     1  Matthew Vernon 
     1  Nick Hastings 

3



In The Last Year

Plugins

Python Rule Engine Plugin
Storage Tiering Rule Engine Plugin
Auditing (AMQP) Rule Engine Plugin
S3 Resource Plugin
Kerberos Authentication Plugin
Curl Microservice Plugin
Indexing Rule Engine Plugin
Logical Quotas Rule Engine Plugin
Metadata Guard Rule Engine Plugin
Policy Composition Framework
Policy Composition Event Handlers

Clients

Python iRODS Client
Metalnx
NFSRODS
Automated Ingest Framework
AWS Lambda for S3
C++ REST API
Zone Management Tool (ZMT)
iRODS Globus Connector
iCommands

4



Working Groups

Technology Working Group

Goal: To keep everyone up to date, provide a forum for roadmap discussion and collaboration opportunities
 
Metadata Templates Working Group

Goal: To define a standardized process for the application and management of metadata templates by the iRODS Server
NIEHS / Data Commons
Utrecht / Yoda
Maastricht / DataHub+
Arizona / CyVerse

 
Authentication Working Group

Goal: To provide a more flexible authentication mechanism to the iRODS Server
SURF
NIEHS
Sanger
CyVerse
Utrecht

5



Working Groups

Imaging Working Group (Announcing Now!)
Goal: To provide a standardized suite of imaging policies and
practices for integration with existing tools and pipelines

Open Microscopy Environment (and OMERO)
Neuroscience Microscopy Core at UNC School of Medicine
New York University
Santa Clara University
UC San Diego
CyVerse
NIEHS

6



Last Year and Next Year

Not in This Talk / Separate Talks
Alan King

Logical Locking
Markus Kitsinger

iCommands Userspace Packaging
Daniel Moore

NetCDF Updates
Python iRODS Client 1.0

Kory Draughn
NFSRODS 2.0

Jason Coposky
Policy Composition
C++ REST API

Bo Zhou
Zone Management Tool (ZMT)
Metalnx 2.4.0 and GalleryView

Justin James
iRODS Globus Connector

Included in This Talk
Kory Draughn

Core Libraries
Justin James

S3 Optimization

7



Internal Refactoring - New C++ iRODS Libraries

filesystem

server, plugins, icommands

iostreams

server, indexing, S3 resource, icommands

thread_pool

delay execution server, S3 resource

connection_pool

delay execution server

query

server, indexing, publishing, storage tiering

query_processor

delay execution server, storage tiering

key_value_proxy

Provides a map-like interface over an existing keyValuePair_t.

lifetime_manager

Guarantees that heap-allocated iRODS C structs are free'd at scope exit.

user group administration

Simplifies management of iRODS users and groups.

shared_memory_object

Simplifies access and management of shared memory.

with_durability

A convenient retry mechanism for functions and function-like objects.

query_builder

Enables query objects to be constructed lazily.

client_api_whitelist (server-side only)

An interface for managing and querying the client API whitelist.

scoped_privileged_client (server-side only)

Elevates the client's privileges for the duration of a scoped block.

scoped_client_identity (server-side only)

Changes the client's identity for the duration of a scoped block.

6 in 2019

9 in 2020

8



Replica State Table (server-side only)

Keeps track of all information for each replica of a given data

object. The primary building block used to implement Logical

Locking.

Logical Locking (server-side only)

Works with the Replica State Table library to manage the

replica status of a group of replicas. This library is the

coordination mechanism for multiple readers and writers to

the same data object.

DNS Caching (server-side only)

Helps to improve network performance within a zone by

caching DNS query results for a certain amount of time.

Hostname Caching (server-side only)

Helps to improve performance by caching the results

obtained from the hosts_config.json file. This ultimately

avoids disk I/O.

Catalog Utilities (server-side only)

Provides convenience functions for database operations and

redirection.

2021 - 11 New iRODS C++ Libraries

Metadata

A high level interface around the existing metadata operations that

simplifies manipulation of AVUs.

Replica

Provides operations that make it easy to manipulate and manage

replicas. Created as a result of the Filesystem library being updated to

handle only the logical space.

Parallel Transfer Engine

A low-level tool that enables data to be transferred in parallel over

multiple iRODS connections.

Replica Access Table (server-side only)

Controls write access to intermediate replicas through the use of

tokens.

Client Connection

Provides a very simple way to connect to iRODS without having to

know the C APIs.

Resource Administration

A high level interface around the existing resource administration

operations that simplifies manipulation of resources.
9



Atomic Apply ACL Operations

Allows multiple ACLs to be manipulated within a single transaction.
Includes a wrapper microservice.

Data Object Finalize

Atomically commits changes to multiple replicas to the catalog.

Replica Open

A convenience function that bundles rxDataObjOpen and rx_get_file_descriptor_info into one call.
Avoids additional network traffic.

Replica Close

Provides controls around closing a specific replica.
This API plugin is meant for experts.

Touch

The iRODS equivalent of UNIX touch, but as an API plugin.
Includes a wrapper microservice and new icommand (i.e. itouch).

2021 - 4 New API Plugins

10



Verification mode performs the following operations:

1. Reports replicas with mismatched size information (physical vs catalog).

2. Reports replicas that are missing checksums.

3. Reports replicas with mismatched checksums (computed vs catalog).

4. Reports if the replicas do not share the same checksum.

 

Step 3 can be time consuming depending on the size of the replica. The

server can be instructed to skip detection of mismatched checksums by

passing the NO_COMPUTE_KW keyword.

 

The verification operations work for one or more replicas. However, when a

specific replica is targeted, step 4 is not performed.

2021 - 1 Refactored API

Checksum

The checksum API now has two modes: Verification and Lookup/Update

Lookup/Update mode performs the following operations:

1. Returns the existing checksum or computes and updates checksums.

2. Reports if the replicas do not share the same checksum assuming no errors

were encountered during the previous step.

 

The following keyword(s) are now NOPs (in regards to rxDataObjChksum):

VERIFY_VAULT_SIZE_EQUALS_DATABASE_SIZE_KW

 

Operations that target multiple replicas will only affect replicas that are marked

good. This means intermediate, locked, and stale replicas will be ignored.

 

Operations that target a specific replica are allowed to operate on stale replicas.

11



S3 Streaming Plugin - Review

The existing "cacheless" plugin always uses a cache file on the server.
 
The new plugin will (in most common cases) stream data directly from iRODS to S3 without
using an intermediate cache file.
 
All reads and writes are handled by an s3_transport class which extends
irods::experimental::io::transport.
 

If a single buffer write is being performed then multipart is not used and data is streamed
sequentially to S3.
If parallel transfer on write is performed in iRODS, a multipart upload is started and each
transfer thread streams data directly to S3 for its part.

12



S3 Streaming Plugin - Review (Read)

13



S3 Streaming Plugin - Review (Write)

14



S3 Streaming Plugin - Changes in the last year

We have had many partners test the streaming S3 plugin over the last year.  Throughout this process
bugs and limitations were identified and resolved.  The following is a summary of some of the issues.
 

During this process we discovered some bugs in both our fork of the libs3 code and in the base
libs3 code.  In addition the libs3 code had quite a few bug fixes and enhancements that were made
since our initial fork.

We rebased our changes on the latest libs3 code.
Fixed bugs we found in the libs3 code.
Fixed some bugs we found in our previous updates to the libs3 code - specifically the use of
global variables that could cause issues when an agent is both reading and writing
simultaneously.
 

Retries after retryable failures were not handled properly in the streaming S3 code.
Since data was read and removed from the circular buffer, it was no longer available for retries. 
Rather than popping data we are now doing a peek and only removing data when a file or part
upload is successful.
Exponential backoff on retries.

15



S3 Streaming Plugin - Changes in the last year

Design of the circular buffer has changed.

Rather than holding chunks, it holds bytes directly.  However, the
CIRCULAR_BUFFER_SIZE parameter is multiples of the S3_MINIMUM_PART_SIZE. 
Timeouts were added to the circular buffer in cases a reader or writer fails.  This
was noticed when replicating from one S3 resource to another.
 

Configuration options that were not yet implemented (such as S3_ENABLE_MPU and
S3_MPU_THREADS) have been implemented.
 
Better partition of bytes to parts for multipart uploads:

Required because with data remaining on the buffer, each thread may have more
bytes than the buffer size.
Each thread breaks its bytes up into parts that are between the minimum part size
and twice the minimum part size.

16



S3 Streaming Plugin - Rules for Cache File Use / Policy For Transfers

Rules for when a cache file is used has been refined.
All objects opened in read-only mode (including `iget`) will be cacheless as S3 allows random
access reads on S3 objects.
 
All `iput` and `irepl` will stream without a cache except in the following two cases:

iRODS is performing a parallel transfer but each part size < S3_MPU_CHUNK size.
iRODS is performing a parallel transfer but multipart uploads are disabled.
 

For non-icommand clients, to avoid using cache the oprType must be set to  PUT_OPR,
REPLICATE_DEST, or COPY_DEST which informs the plugin that the client will follow iput-like
behavior:

The file will be split between N processes/threads so that each has the same number of bytes
with the "extra" N-1 bytes handled by the last process or thread.
 

If the oprType is set as above and the contract is not met, transfers will not work!!!
 
In all cases, if the client is not using the server's policy to set the number of transfer threads, the
NUM_THREAD_KW needs to be set by all client processes.

17



S3 Streaming Plugin - Rationale for the Parallel Transfer Contract

Constraints in how multipart uploads work:
Part numbers have to be sequential.  (They can arrive in any order but part numbers can't be skipped.)
All part sizes (except last) must be greater than the minimum part size (5 MB).
So retries can be done, all part sizes must be less than the circular buffer size (default 10 MB).
 

Limited knowledge of each S3 transfer thread.  It knows:
Beginning offset
The file size
The number of threads.
 

Each thread must determine its starting part number and how many bytes it will be sending.  This is
impossible without the contract mentioned in the previous slide or initial coordination between threads.

 
Example:  24 MB file with a 10 MB per-thread buffer and 3 transfer threads.
 
Scenario 1:  Thread 0 sends 11 MB.  Thread 1 sends 5 MB.  Thread 2 sends 8 MB.
Scenario 2:  Thread 0 sends 8 MB.  Thread 1 sends 8 MB.  Thread 2 sends 8 MB.
 
In both scenarios, thread 2 gets an offset of 16 MB, knows there are 3 threads, and the file size (24 MB).
 
What is thread 2's starting part number? In scenario 1 it would be part 4 because (thread 1 would require two
parts) and in scenario 2 it would be part 3.  How many bytes is it sending?

18



S3 Streaming Plugin - Upload Performance to Local MinIO Server

10 transfer threads (each)

 

Uploads every 100 MB
between 100 MB and
3200 MB

 

Median of 5 uploads for
each size

19



S3 Streaming Plugin - Download Performance to Local MinIO Server

10 transfer threads (each)

 

Uploads every 100 MB
between 100 MB and
3200 MB

 

Median of 5 downloads
for each size

20



Philosophy to Policy

With the new libraries and first class replicas, we can rewrite 90% of the internals, and then fix the
things that depend on them later, with little expectation of regression, because the interfaces
remain the same.
 
Internally

We will have a new API... but not really
Instead, we stepped back and built good tools

Allows us to refactor and go faster without breaking the 4.x API
This has turned out to be more powerful than originally expected

 
Externally

It's a good story, the ability to compose policy into capabilities
Can build smaller pieces of functionality which can be composed to help solve larger problems
We don't have to worry about side effects

 
Continuation within the Rule Engine Plugin Framework allows administrators to break apart
monolithic policy implementations into reusable components.

21



Active Development Work

Core

iRODS 4.2.10

iRODS 4.3.0

Cloud Native iRODS (5.0.0?) 

22



iRODS Internships - Summer 2021

iRODS Server Async Facility (4.2.x)
The iRODS Server Process Model consists of a main long-running server, a child long-running Agent
Factory, and many short-lived Agent processes to serve client requests. There are a number of
'background tasks' that would be nice to have running as well that could do clean up, bookkeeping,
etc. This project would be to design and implement an asynchronous facility for the iRODS Server.

Automated Ingest Refactor (Python client)
The iRODS Automated Ingest tool can currently scan in parallel a local filesystem and an S3 bucket for
new and updated files. We are interested in adding the ability to scan an iRODS path as well. This will
allow the scanner to see when files are removed (the negative space). The current logic needs to be
refactored to provide these different targets as separate scanning strategies.  Separating these
strategies would also allow us to scan a queue or log (Kafka, RabbitMQ, etc.).

iRODS delayServer w/ Implicit remote() (4.3.0)
Currently, jobs executed by the delay server are tied to the machine on which the delay server is
running (which is the catalog provider in 4.2.x). The delay server should be able to execute delayed
rules on any machine in a zone. This is currently possible by embedding a remote() block inside of a
delay() block. The server should grow a configuration option to hold a list of eligible rule execution
servers which would be chosen randomly to execute rules on the delay queue. If no such list is
provided, the server would behave as it does now, defaulting to a list of one server. 23



Big Picture

Core
4.3.0 - Harden and Polish

 
Clients

GUIs (Metalnx, ZMT, et al.)
Onboarding and Syncing (Automated Ingest)
File System Integration (NFSRODS / SMBRODS)
iRODS Console (alongside existing iCommands)
C++ REST API

 
Continue building out policy components (Capabilities)
 
We want installation and management of iRODS to become about policy design,
composition, and configuration.
 
Please share your:

use cases
pain points
hopes and dreams

24



Open Source Community Engagement

Get Involved

Working Groups

GitHub Issues

Pull Requests

Chat List

Consortium Membership

 

Tell Others

Publish, Cite, Advocate, Refer

25


