
Research Data
Management at RUG

Centre for Information Technology

RUG RDMS

2

The Research Data Management System
at the University of Groningen (RUG RDMS):

architecture, solution engines and challenges

A. Tsyganov, S. Stoica, M. Babai, V. Soancatl-Aguilar, J. Mc Farland,
G. Strikwerda, M. Klein, V. Boxelaar, A. Pothaar, C. Marocico, J. van den Buijs

(rdms-support@rug.nl)

RUG RDMS

3

https://www.rug.nl/about-ug/profile/facts-and-figures/

https://www.rug.nl/about-ug/profile/facts-and-figures/

RUG RDMS: Agenda

4

● Storage architecture
● Application design
● Web Interface
● iRODS rules
● Custom policies engine
● Metadata templates
● Auditing
● What’s next?
● Q&A

RUG RDMS

5

Storage Architecture

6

RUG RDMS: Storage Architecture

- our own "Google Drive" for Research-data (keep data
on-premises)
- object store instead of old-school filesystems
- self service: user can set ACL's on files without helpdesk
- self service: user can update/add metadata to files
- home-data, group-data, project-data
- files/access can be audited (rabbitmq/kibana/ELK-stack)
- files are replicated (2 copies, spread between 3 locations)

7

RUG RDMS: Storage Architecture

8

RUG RDMS: Storage Architecture

3 'Big' storage-servers (located in 3 different DC's)

Ubuntu/ZFS: fancy/hip filesystem (data-deduplication, compression,
 'self'-healing, software RAID

root@gargantua0:~# zpool status | grep sd | wc -l
90

root@gargantua0:~# zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH
pool0 616T 97.1T 519T - 0% 15% 1.00x ONLINE

9

RUG RDMS: Storage Architecture

IRODS Zones:

- rugZone: big zone for current projects
- umcgZone: dedicated zone for UMCG (storage on datahandeling)
- sramZone: dedicated (test) zone for SRAM (external users test)
- testZone: dedicated test zone for user-test/workshops
- devZone: dedicated dev zone for developers/playground

More/extra Zones are VM’s,so they can run on the same
central Infrastructure.

10

RUG RDMS: Storage Architecture

RDMS backend should survive..
● broken disks (hot-swappable)
● broken volume (files are replicated)
● broken server(s)
● 1 downed data-centre
● small scale network outage
● maintenance...
● resc-vm’s are small (move/migrated if needed)
● scalable workload (load-balancers, multi-site)
● High Performance Computing workloads

11

RUG RDMS: Storage Architecture

Authentication:
- PAM-based authentication stack
- login:email/university-password
- RUG-LDAP (rug-users)
- SRAM-LDAP (for external users)

12

RUG RDMS: Storage Architecture

13

RUG RDMS: Storage Architecture
Security best-practises:

- no root ssh login on systems
- SSL everything
- only 2 admins (admin-group) can ‘sudo’
- ssh-login only from admin-network (BWP-lan)
- host-based firewall (iptables)
- network based central firewall (Palo Alto)
- stealth (intruder detection/file integrity)
- fail2ban on webdav
- todo/nice-to-have: fail2ban on iRODS
- monthly security-audit on systems by sec team
- external company pentesting (yearly)

RUG RDMS

14

Application design

15

• Modularity

─ Different applications can make use of the system through an API

• Abstraction
─ Functionality is split hierarchically among the different layers:

iRODS, mid-tier, front-end;

─ iRODS layer implements basic functionality and exposes it to

higher layers through an API

• Containerization: Docker for services, VMs for iRODS/resource

servers

• Robust: vertically and horizontally

RUG RDMS: Application design

16

RUG RDMS: Application design

NGINX
• Proxy
• Request forwarding

RUG RDMS: Application design

NGINX

Mid-tier Web Service Mid Tier DB Login Web Service + Redis DB

• Login
• Cookies
• External accounts

• Web Interface
• Projects management
• Users management
• Context management
• Data management

• Projects/Users storage
• Roles
• Sessions storage

• Proxy
• Request forwarding

18

RUG RDMS: Application design

iRODS

NGINX

Mid-tier Web Service Mid Tier DB Login Web Service + Redis DB

• Login
• Cookies
• External accounts

ResourceResource

• Web Interface
• Projects management
• Users management
• Context management
• Data management

• iRODS connection
• iRODS requests
• iRODS default search

• Projects/Users storage
• Roles
• Sessions storage

• Proxy
• Request forwarding

iRODS Web Service
ICAT

Resource

19

iRODS

ResourceResource

ICAT

Resource

RUG RDMS: Application design

20

iRODS

ResourceResource

ICAT

Resource

RUG RDMS: Application design

command line interface

Web Dav

other...

21

RUG RDMS: Application design

Metadata

• Mutable metadata

• Immutable metadata • Automatic extracted metadata
• System metadata

System metadata is a number of metadata attributes
in different formats that are used by the RDMS to
control data workflows
• Mutable lists of metadata (id's)
• Object definition: project/dataset etc..

• User generated metadata from Web interface
• User generated metadata from command line interface

RUG RDMS

22

Web Interface

23

RUG RDMS: Web Interface

24

RUG RDMS: Web Interface

25

RUG RDMS: Web Interface

Objects tree Files/Folders

26

RUG RDMS: Web Interface

Object information:
● permissions
● metadata
● audit
● iRODS metadata
● shared links

27

RUG RDMS: Web Interface

Right click
actions menu

Extract
metadata

28

RUG RDMS: Web Interface

Background process to
extract metadata

29

RUG RDMS: Web Interface

Extracted
metadata

RUG RDMS

30

iRODS rules

31

• Custom rules:

─ delayed rules and monitoring

─ copy data with permissions & metadata

─ automatic metadata extraction

─ custom policies engine

─ audit and permission control extra rules

• Rules to support tape library archiving

RUG RDMS: iRODS rules

RUG RDMS

32

Custom policies engine

33

RUG RDMS: Custom policies engine
Data object: file or folder

34

RUG RDMS: Custom policies engine
Data object: file or folder

Special metadata as json
• Name:

sysmdt_rdms_policy_<unique hash of the full path to object>
• Value:

{"policy_name" : <policy_name>
,"policy_creator" : <policy_creator>
,"input_parameters" :

{
 <parameter_name>: <parameter_value,
 <parameter_name>: <parameter_value,
 <parameter_name>: <parameter_value,
 ...
}

}
• Unit:

POLICY|<policy type>|<policy status>|<policy user>

35

RUG RDMS: Custom policies engine
Data object: file or folder

36

RUG RDMS: Custom policies engine
Data object: file or folder

/testZone/home/Projects/project0_5n1 => one direction hash transformation =>
=> 2c7197f0a89e1c842180756537534a81a069be79e8ec6fa1473af21c

• Name:
sysmdt_rdms_policy_2c7197f0a89e1c842180756537534a81a069be79e8ec6fa1473af21c

• Value:
{"policy_name" : "project_user_participation_enddate",
 "policy_creator" : "atsG",
 "input_parameters" :

{ "user_name" : "atsG",
"end_date" : "10/06/2021 11:52",
"date_format" : "%d/%m/%Y %H:%M"

}
}

• Unit:
POLICY|PROJECT|TORUN|atsG

37

RUG RDMS: Custom policies engine

Data object: file or folder Policy metadata

38

RUG RDMS: Custom policies engine

Data object: file or folder Policy metadata

Mid-tier database { key, unique_value_hash}

39

RUG RDMS: Custom policies engine

Data object: file or folder Policy metadata

Mid-tier database { key, unique_value_hash}

40

RUG RDMS: Custom policies engine

key verification hash object name

● Code injection protection: if verification is turned on then only policies with the correct
verification hash will be triggered.

● Protection from a manual change of the metadata for policies

41

RUG RDMS: Custom policies engine

Server cron job (as rods user)

42

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

43

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

44

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

set irods environment username
and run asynchronously irules
with metadata id as input

45

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

set irods environment username
and run asynchronously irules
with metadata id as input

irule

46

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

set irods environment username
and run asynchronously irules
with metadata id as input

irule

pass execution to the python irule

get metadata key/value/unit by
metadata id

47

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

set irods environment username
and run asynchronously irules
with metadata id as input

irule

pass execution to the python irule

get metadata key/value/unit by
metadata id

get python policy function name
and parameters from the

metadata value

48

RUG RDMS: Custom policies engine

Server cron job (as rods user)

icommands - get all metadata that
are policies to run

get policy information:
- metadata id
- user that needs to run policy

set irods environment username
and run asynchronously irules
with metadata id as input

irule

pass execution to the python irule

get metadata key/value/unit by
metadata id

get python policy function name
and parameters from the

metadata value

execute policy

update policy status

49

RUG RDMS: Custom policies engine

method to run policy that we've fetched from the metadata of the object
def run_policy(self):
 l_function_name, l_parameters = self.parce_policy() # parce json
 if self.policyIsValid():
 if self.c_namespace.C_AVAILABLE_POLICIES.has_key(l_function_name):
 self.c_namespace.C_AVAILABLE_POLICIES[l_function_name](self, l_parameters) # execute code

C_AVAILABLE_POLICIES = {
 "project_user_participation_enddate" : run_policy_project_user_participation_enddate
}

from .policy_project_user_participation_enddate import run_policy_project_user_participation_enddate

RUG RDMS

50

Metadata Templates

RUG RDMS: Metadata Templates

• Metadata is the necessary component to transform data into knowledge.

• A well-written metadata template is crucial to tag the data being stored

• Several requests for metadata template in different research domains:
─ social sciences, archeology, microbiology

Why our approach?

51

{

 "Publication":

 {

 "Title": "An overview of RDMS",

 "Authors": [

"RDMS Team Member 1",

"RDMS Team Member 2"],

 "Date": "2021",

 "Publisher": "RUG",

 "Pages" : "4"

 }

}

52

{

 "Recording": {

 "Camera": "Ladybug5+",

 "Model" : "LD5P-U3-51S5C-R",

 "Subject": "Asfalt quality",

 "Date": "2021",

 "Azimuth angle": 140

 }

}

RUG RDMS: Metadata Templates

• There is no solution of one-size-fits-all
─ Each research domain has specific metadata-attributes

─ Within the same domain research questions may have different collection
of tags

─ The technical skills of the users are very different

53

Provide the User with the possibility to define domain/research
specific metadata templates

RUG RDMS: Metadata Templates

54

JSON Schema

Template components
Tree

XSD - schema

Dynamically created
 form Metadata AVUs

Validation

RUG RDMS: Metadata Templates - Technical solution

55

Self defined structure

Self defined types

RUG RDMS: Metadata Templates - Technical solution

56

Self defined structure

Self defined types

Attributes are validated at input

RUG RDMS: Metadata Templates - Technical solution

RUG RDMS

57

Auditing

RDMS
midtier

RDMS

RUG RDMS: Auditing

58

RDMS
midtier

RDMS

59

 “pep_regex_to_match" to
reduce the amount of data

RUG RDMS: Auditing

RDMS
midtier

RDMS

60

 “pep_regex_to_match" to
reduce the amount of data Ruby script to remove

empty fields in documents

RUG RDMS: Auditing

RDMS
midtier

RDMS

61

 “pep_regex_to_match" to
reduce the amount of data Ruby script to remove

empty fields in documents

5% of the original amount of data

RUG RDMS: Auditing

62

RUG RDMS: Auditing - Index Lifecycle Management

RUG RDMS: Elastic Search - Index Lifecycle Management

63

Index Lifecycle Management

 Hot Warm Cold

● Actively queried
● Written Data
● Required phase

64

Index Lifecycle Management

 Hot Warm Cold

● Actively queried
● Written Data
● Required phase

● Actively queried
● No data written
● Moved to less performant

hardware

RUG RDMS: Elastic Search - Index Lifecycle Management

65

Index Lifecycle Management

 Hot Warm Cold

● Actively queried
● Written Data
● Required phase

● Actively queried
● No data written
● Moved to less performant

hardware

● Less frequently queried data
● Searchable
● Before deleted, snapshot is created

and stored to long term storage

RUG RDMS: Elastic Search - Index Lifecycle Management

RUG RDMS: What's next?

66

● Make code open source & improve deployment
● Integrate switch between different iRODS zones
● Finish customers use cases (currently there are 7 major project running

from different faculties)
● Make iRODS NFS mount
● File level versioning
● Multi factor authentication & External users
● Fail2ban
● Windows ingest large files
● Add metadata via mount
● Next version of the metadata templates
● Auditing - SLM snapshots

rdms-support@rug.nl

Q&A?

