
06/10/2021

Lazlo Westerhof
l.r.westerhof@uu.nl

Retrospective: migrating Yoda from the PHP
iRODS client to the Python iRODS client

Organisation & people

Incl. faculties
Medicine

ESTABLISHED

1636 > 650
PROFESSORS

7+2
FACULTIES

teaching
institutes > 7,400

STAFF-MEMBERS

> 30,000
STUDENTS

Collaborate safely as a group
● membership self-managed by researchers

Maintain integrity, deposit a folder in the vault
● metadata can vary per community,
● datamanager approves deposit

Allow FAIR reuse, publish a data package
● datamanager approves publication, DOI citable data

Research

Vault

Yoda: 'FAIR' Research Data Management

Submit Approve Secured
data

folder

+
metadata

Data deposit workflow

Vault
data

package

Researcher
requests to deposit

Data manager
checks metadata
complies with policies

System
deposits a copy in
the vault

Submit Approve Published
DOI

landingpage
DataCite
OAI-PMH

FAIR data publication workflow

Vault
data

package

Researcher
requests to publish

Data manager
Checks if metadata complies
with publication policies

System
Publishes the metadata and
provides internet access to
data if classified as “Open”

2015

•Yoda Portal and Intake module for Youth project, iRODS 3.3 based
•Groupmanager module

2016

•Yoda Disk (davrods module)
•Yoda Portal supports dynamic Plug-in modules, iRODS 4.0

2017

•Research Workspace, revisions, metadata form
•Vault archive, deposit workflow, statistics, data publication workflow (DOI)

2018

•Vault metadata operations, EPIC PID, External user provisioning
•(de/re)publication workflows, OAI-PMH harvestable, iRODS 4.1

2019

•Metadata-schema management, dynamic metadata forms rendering
•Metadata form based on JSON schema, file up/download in Portal, iRODS 4.2.6

2020

•Metadata format changed from XML to JSON, with JSON-AVU
•Python rules engine iRODS 4.2.7

•Yoda API, OIDC authentication, iRODS 4.2.9?
•Change from irods-php to python-irodsclient2021

v0.4 – v0.9

v0.9.7

v1.0 – v1.3

v1.4

v1.5

v1.6

Yoda milestones

v1.7

Users Storage (TB)

Yoda managed research data

2015 2016 2017 2018 2019 2020 2021Q1
0

40

80

120

160

200

240

280

320

360

400

440

480

520

560

600

640

680

720

760

800

840

880

920

960

2015 2016 2017 2018 2019 2020 2021Q2
0

1000

2000

3000

4000

5000

6000

7000

Internal users External users

user interaction

configuration

data integration

Yoda is build on iRODS

 Data Policies and -services

web portal
https

network disk
davrods

power-user
iCommands

Yoda web portal & API

Yoda web portal

Yoda API

● Yoda web portal communicates with
backend using Yoda API

● API defined in Python ruleset
● REST API
● exposes all Yoda functionality as API
● all business logic in ruleset
● very lean web portal

Converting a rule
to Yoda API

iRODS rule language.
concat(*x, *y, *foo) {
 *foo = *x ++ *y;
}

Equivalent Python rule.
def concat(rule_args, callback,
rei):
 x, y = rule_args[0:2]
 rule_args[2] = x + y

Yoda API Python rule
@api.make()
def api_concat(ctx, foo, bar):
 return foo + bar

Converting a rule
to Yoda API

iRODS rule language.
concat(*x, *y, *foo) {
 *foo = *x ++ *y;
}

Equivalent Python rule.
def concat(rule_args, callback,
rei):
 x, y = rule_args[0:2]
 rule_args[2] = x + y

Yoda API Python rule
@api.make()
def api_concat(ctx, foo, bar):
 return foo + bar

● Equivalent Python rule
● Boilerplate
● Non-pythonic
● Difficult to interface from Python functions

Converting a rule
to Yoda API

● Equivalent Python rule
● Boilerplate
● Non-pythonic
● Difficult to interface from Python functions

● Can we make this easier?
● @api decorator
● JSON input Python arguments→
● Python return value JSON output→
● Checks required/optional arguments
● Supports dicts, lists...
● Standardizes error handling

iRODS rule language.
concat(*x, *y, *foo) {
 *foo = *x ++ *y;
}

Equivalent Python rule.
def concat(rule_args, callback,
rei):
 x, y = rule_args[0:2]
 rule_args[2] = x + y

Yoda API Python rule
@api.make()
def api_concat(ctx, foo, bar):
 return foo + bar

Yoda web portal

Yoda web portal
CodeIgniter + irods-php

Yoda API

Yoda web portal

Yoda web portal
Flask + python-irodsclient

Yoda API

Why are we migrating from
the PHP client to Python client?

● Client actively developed
● Maintainability
● Performance improvement
● One programming language less
● Libraries and frameworks
● Available tooling

Flask iRODS
● Two modules for communication with iRODS

● Connection manager module
● manage python-irodsclient sessions
● session per authenticated user

● API module
● handles API calls from web portal
● JSON encoding / decoding

Interfacing with Yoda API
● Yoda API rule

● JSON input JSON→ output

Interfacing with Yoda API
● Yoda API rule

● JSON input JSON→ output

● Calling API from Flask
● dictionary input → dictionary output

Interfacing with Yoda API
● Yoda API rule

● JSON input JSON→ output

● Calling API from Flask
● dictionary input → dictionary output

● Calling API from JavaScript
● dictionary input → dictionary output

Data archive geosciences

data
package

● Simplify deposit workflow to three steps
● Upload data
● Add metadata
● Submit data package

● Reuses existing Yoda API functionality

Upload data Add metadata Submit

Modern web file upload suport
● Existing client library (https://github.com/flowjs/flow.js)

● HTML5 File API
● Support for folders
● Chunked uploads
● Resumable uploads

● python-irodsclient made it easy to implement upload backend

https://github.com/flowjs/flow.js

Python client challenges
● Session cleanup after rule execution

● re-open a connection to iRODS after each rule execution
● significant performance overhead
● https://github.com/irods/python-irodsclient/issues/190

● Character limits?
● strlen 1030 of msg > dim size 1024

Yoda is free and open source
Everything is available on GitHub: https://github.com/UtrechtUniversity

Deployment: https://github.com/UtrechtUniversity/yoda/tree/pyportal
Yoda portal: https://github.com/UtrechtUniversity/yoda-portal/tree/pyportal
iRODS ruleset: https://github.com/UtrechtUniversity/irods-ruleset-uu/tree/pyportal

More information? UGM Slack / l.r.westerhof@uu.nl→

https://github.com/UtrechtUniversity/irods-ruleset-uu/tree/pyportal

$ iexit

© Utrecht University

The information in this presentation has been compiled with the utmost care,
but no rights can be derived from its contents.

DISCLAIMER

