
06/10/2021

Lazlo Westerhof
l.r.westerhof@uu.nl

Retrospective: migrating Yoda from the PHP 
iRODS client to the Python iRODS client
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Collaborate safely as a group
● membership self-managed by researchers

Maintain integrity, deposit a folder in the vault
● metadata can vary per community, 
● datamanager approves deposit

Allow FAIR reuse, publish a data package
● datamanager approves publication, DOI citable data 

Research

Vault

Yoda: 'FAIR' Research Data Management
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2015

•Yoda Portal and Intake module for Youth project,  iRODS 3.3 based
•Groupmanager module

2016

•Yoda Disk (davrods module)
•Yoda Portal supports dynamic Plug-in modules, iRODS 4.0  

2017

•Research Workspace, revisions, metadata form
•Vault archive, deposit workflow, statistics, data publication workflow (DOI)

2018

•Vault metadata operations, EPIC PID, External user provisioning
•(de/re)publication workflows, OAI-PMH harvestable,  iRODS 4.1

2019

•Metadata-schema management, dynamic metadata forms rendering
•Metadata form based on JSON schema,  file up/download in Portal, iRODS 4.2.6

2020

•Metadata format changed from XML to JSON, with JSON-AVU
•Python rules engine iRODS 4.2.7

•Yoda API, OIDC authentication, iRODS 4.2.9?
•Change from irods-php to python-irodsclient2021

v0.4 – v0.9

v0.9.7

v1.0 – v1.3

v1.4

v1.5

v1.6

Yoda milestones

v1.7
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Yoda managed research data
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user interaction

configuration

data integration

Yoda is build on iRODS

                                               Data Policies and -services

web portal
https

network disk
davrods

power-user
iCommands



Yoda web portal & API

Yoda web portal

Yoda API

● Yoda web portal communicates with 
backend using Yoda API

● API defined in Python ruleset
● REST API
● exposes all Yoda functionality as API
● all business logic in ruleset
● very lean web portal



Converting a rule
to Yoda API

# iRODS rule language.
concat(*x, *y, *foo) {
  *foo = *x ++ *y;
}

# Equivalent Python rule.
def concat(rule_args, callback, 
rei):
    x, y = rule_args[0:2]
    rule_args[2] = x + y

# Yoda API Python rule
@api.make()
def api_concat(ctx, foo, bar):
    return foo + bar
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Converting a rule
to Yoda API

● Equivalent Python rule
● Boilerplate
● Non-pythonic
● Difficult to interface from Python functions

● Can we make this easier?
● @api decorator 
● JSON input  Python arguments→
● Python return value  JSON output→
● Checks required/optional arguments
● Supports dicts, lists...
● Standardizes error handling

# iRODS rule language.
concat(*x, *y, *foo) {
  *foo = *x ++ *y;
}

# Equivalent Python rule.
def concat(rule_args, callback, 
rei):
    x, y = rule_args[0:2]
    rule_args[2] = x + y

# Yoda API Python rule
@api.make()
def api_concat(ctx, foo, bar):
    return foo + bar



Yoda web portal

Yoda web portal
CodeIgniter + irods-php

Yoda API



Yoda web portal

Yoda web portal
Flask + python-irodsclient

Yoda API



Why are we migrating from 
the PHP client to Python client?

● Client actively developed
● Maintainability
● Performance improvement
● One programming language less
● Libraries and frameworks
● Available tooling



Flask iRODS
● Two modules for communication with iRODS

● Connection manager module
● manage python-irodsclient sessions
● session per authenticated user

● API module
● handles API calls from web portal
● JSON encoding / decoding



Interfacing with Yoda API
● Yoda API rule

● JSON input  JSON→  output
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Interfacing with Yoda API
● Yoda API rule

● JSON input  JSON→  output

● Calling API from Flask
● dictionary input  → dictionary output

● Calling API from JavaScript
● dictionary input  → dictionary output



Data archive geosciences

data
package

● Simplify deposit workflow to three steps
● Upload data
● Add metadata
● Submit data package

● Reuses existing Yoda API functionality

Upload data Add metadata Submit



Modern web file upload suport
● Existing client library (https://github.com/flowjs/flow.js)

● HTML5 File API
● Support for folders
● Chunked uploads
● Resumable uploads

● python-irodsclient made it easy to implement upload backend

https://github.com/flowjs/flow.js


Python client challenges
● Session cleanup after rule execution

● re-open a connection to iRODS after each rule execution
● significant performance overhead
● https://github.com/irods/python-irodsclient/issues/190

● Character limits?
● strlen 1030 of msg > dim size 1024



Yoda is free and open source
Everything is available on GitHub: https://github.com/UtrechtUniversity

Deployment: https://github.com/UtrechtUniversity/yoda/tree/pyportal
Yoda portal: https://github.com/UtrechtUniversity/yoda-portal/tree/pyportal
iRODS ruleset: https://github.com/UtrechtUniversity/irods-ruleset-uu/tree/pyportal

More information?  UGM Slack / l.r.westerhof@uu.nl→

https://github.com/UtrechtUniversity/irods-ruleset-uu/tree/pyportal


$ iexit
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