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13TH ANNUAL CONFERENCE SUMMARY 

The Virtual iRODS User Group Meeting of 2021 gathered together iRODS users, Consortium 

members, and staff to discuss iRODS-enabled applications and discoveries, technologies developed 

around iRODS, and future development and sustainability of iRODS and the iRODS Consortium. 

The virtual four-day event was held from June 8th to 11th, hosted by the Wellcome Sanger Institute and

the iRODS Consortium, with 274 people attending from 21 countries. Attendees and presenters 

represented 133 academic, governmental, and commercial institutions. 
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ABSTRACT

iRODS 4.2.9 introduces Logical Locking by providing additional replica status values within the catalog. Previously,

replicas in iRODS could only be marked ’Good’ or ’Stale’. This did not capture the states of when data was in flight,

or incomplete. This paper will explain the new Intermediate and Write-Locked states for iRODS replicas and how

they are used to provide protection from uncoordinated writes into the system.

Keywords

iRODS, data management, logical locking, concurrency

INTRODUCTION

The iRODS Technical Overview[1] states:

iRODS provides a logical representation of files stored in physical storage locations. We call this logical

view a virtual file system and the capabilities it provides, Data Virtualization.

Interactions with data in an iRODS system are meant to mirror how one might interact with data in a traditional

hierarchical file system. The purpose of the virtual file system is to present data across a number of geographically

distributed servers under a unified namespace - in other words, a distributed system. A distributed system implies

operational concurrency and operational concurrency implies race conditions.

The following document will describe how iRODS interacts with data, how the iRODS Consortium seeks to address

concurrency in manipulation of data within an iRODS system, and planned e↵orts for protecting data access and

manipulation as well as policy execution.

BACKGROUND

History of data representation and movement

The logical representation of data presented by the virtual file system is known as a Data Object, which the iRODS

Beginner Training[2] defines as:

iRODS UGM 2021 June 8-11, 2021, Virtual
[Authors retain copyright.]
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Data Object: a logical representation of data that maps to one or more physical instances (Replicas) of

the data at rest in Storage Resources

A Replica could have one of two statuses:

• Stale: The replica is no longer known to be Good. Usually indicates that a more recently written-to replica

exists. This does not necessarily mean that the data is incorrect but merely that it may not reflect the ”truth”

for this Data Object.

• Good: The replica is Good. Usually the latest replica to be written. When a replica is Good, all bytes and

system metadata (size and checksum, if present) are understood to have been recorded correctly.

iRODS has historically presented an interface which interacts with data at the logical level - that is, with Data

Objects. However, over time, it became clear that interacting directly with replicas is very important for iRODS

users and administrators. Other operations were added to allow for replica manipulation which were very di�cult to

integrate with existing APIs.

As such, operations which deal directly with replicas have completely separate implementations for moving data from

the logical level operations. Furthermore, operations dealing with Data Objects still need access to replica information

(after all, the operations interact with the storage eventually, at which point it is interacting at the replica level).

On top of all of this, because replica status can only be Good or Stale, any replica which exists in the catalog but

has not been finalized is being represented incorrectly because the data is still in flight. Good and Stale refer to data

which is at rest. There is no status to represent in-flight data.

Unifying data movement with replicas as First Class Citizens

These di↵erences in implementation have consistency and performance implications for moving data. In reality, all

of these data moving operations should be (and are) identical:

open replica –> move data to replica –> close replica –> finalize system metadata in catalog

Every data moving operation in iRODS should implement the above steps. These should use the same set of low-level

interfaces so that data movement is made consistent across operations. To make this possible, replicas must be treated

as the operative entity in data movement, not Data Objects (which are one-to-many mappings to replicas). This

requires that replicas be treated as First Class Citizens within the iRODS server where, historically, they have not -

at least not in all instances.

E↵orts are being made to change this in the server, but it has not yet been fully realized. We will take a slight detour

to describe in detail one of the most important operations within an iRODS system: Replication. First it will be

defined at an abstract level as it is intended to function, and then the implementation and interface in iRODS will

be described. This highlights the importance of a unified mode of data movement within the system even while the

requirements for the operation di↵er so greatly from others such as put, copy, and rename.

Rules For Replication

Replication refers to copying a physical replica of an existing Data Object from one storage resource to another.

Replication requires 3 inputs:

1. Logical path: Path to an existing Data Object with at least one replica which is at rest and can be read.

2
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case source destination result reason

0 - - unchanged No source replica exists

1 - & unchanged No source replica exists

2 - X unchanged No source replica exists

3 & - & Replication allowed

4 & & unchanged Destination replica must be Stale

5 & X & Replication allowed

6 X - X Replication allowed

7 X & unchanged Destination replica must be Stale

8 X X unchanged Source replica must be Good

Table 1. This table shows the nine cases of initial state of the replicas on the source and destination resources,

the resulting replica state on the destination resource, and the reason for the result.

2. Source resource: The resource from which data will be copied/read.

3. Destination resource: The resource to which data will be copied/written.

The source resource must already have an existing, at-rest replica which can be read in order for replication to be

possible in any case.

If the destination resource has no replica, replication to the destination resource is allowed in all cases. If this is true,

a new replica will appear on the destination resource as a result of the replication. If this is not true, the destination

resource has an existing replica and replication may or may not occur.

If the destination resource has an existing replica, replication would be performing a replica update. The following

requirements must be true in order for updating the replica to be allowed :

1. The destination resource must not be the source resource

2. The destination replica must be Stale

3. The source replica must be Good

Table 1 shows all possible cases for replication between a single source and destination when the source and destination

replicas do or do not exist. Some notes about the table:

• ‘&’ represents a Good replica

• ‘X’ represents a Stale replica

• ‘-’ indicates a replica which does not exist.

• All replicas are assumed to be at rest

REPLICATION MECHANISM

3
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The iRODS server provides the rsDataObjRepl API in order to replicate Data Objects. Here is the signature:

int rsDataObjRepl(rsComm_t*, dataObjInp_t*, transferStat_t**);

As described in the Rules for Replication subsection above, replication requires a logical path, a source resource, and

a destination resource. The following describes how these requirements can be satisfied.

Logical Path

As described in the general Rules for Replication subsection, the logical path must refer to an existing iRODS Data

Object of which the to-be-determined-or-specified source replica must exist. The authenticated user must have at

least write permission on the Data Object in order to read from the source replica and write to the destination replica.

The other qualifications regarding source and destination replica statuses have already been described in Rules for

Replication.

Source Resource

In order to specify a source resource, any of the following may be provided via condInput:

1. RESC_NAME_KW - Must be a root resource. If this is not true, the following error is returned: DIRECT_CHILD_ACCESS.

2. RESC_HIER_STR_KW - Must be a full resource hierarchy.

3. REPL_NUM_KW - Must be an integer representing the existing replica.

If none of the above is provided, any resource is eligible for use as the source resource.

Resource hierarchy resolution is then performed on a OPEN operation by the API to determine the full resource

hierarchy. The following must be true of the resolved resource hierarchy (depending on which of the source resource

inputs was provided):

1. The resolved resource hierarchy has a root which matches RESC_NAME_KW

2. No resource hierarchy resolution is performed.

3. The resolved resource hierarchy has an existing replica with a replica number which matches REPL_NUM_KW

If the resolved resource hierarchy does not meet the requirements of the provided inputs or the requirements of the

source replica as defined by the Rules of Replication, the following error is returned: SYS_REPLICA_INACCESSIBLE.

Destination Resource

In order to specify a destination resource, any of the following may be provided via condInput:

1. DEST_RESC_NAME_KW - Must be a root resource. If this is not true, the error DIRECT_CHILD_ACCESS is returned.

2. DEST_RESC_HIER_STR_KW - Must be a full resource hierarchy.

If neither of the above is provided, the system will look for a DEF_RESC_NAME_KW (the default resource). If present,

DEST_RESC_NAME_KW is set to this value. If not, any resource is eligible for use as the destination resource.

Resource hierarchy resolution is then performed on a CREATE operation by the API to determine the full resource

hierarchy. The following must be true of the resolved resource hierarchy (depending on which of the destination

resource inputs was provided):

4
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1. The resolved resource hierarchy has a root which matches DEST_RESC_NAME_KW

2. No resource hierarchy resolution is performed.

If the resolved resource hierarchy does not meet the requirements of the provided inputs, the following error is

returned: SYS_REPLICA_INACCESSIBLE.

If the destination resource has a replica which does not meet the requirements for a destination replica as defined in

the Rules of Replication, the following error is returned: SYS_NOT_ALLOWED.

Updating all replicas

When the ALL_KW is provided, the API will gather a list of all existing replicas and update each one, serially at this

time, according to all of the rules described above. Specifying a destination resource along with the ALL_KW is not

allowed.

PROBLEMS WITH UNCOORDINATED, CONCURRENT OPERATIONS

Once data movement is unified across the iRODS server, the conversation about concurrency as it relates to system

correctness can happen. We have identified three ways in which the state of the system can be made incorrect:

1. Uncoordinated, concurrent writing to a single replica can lead to Data Corruption.

2. Uncoordinated, concurrent writing to multiple replicas of the same Data Object can lead to Truth Corruption.

3. Uncoordinated, concurrent operation execution can lead to Policy Violations.

The iRODS Consortium is actively working to address these three situations in the server. The first two have been

partially addressed in released server software and the third is to be addressed in a future release.

Data Corruption and Intermediate Replicas

The first problem listed above is that in-flight replicas can be opened and modified concurrently by multiple agents

in an uncoordinated fashion. Also, as a result of iRODS historically creating replicas in the Good status, the catalog

does not reflect the current, true state of the data from the moment it is registered in the catalog.

To address this, a third replica status has been introduced:

Intermediate: The replica is actively being written to. The state of the replica cannot be determined because the

client writing to it still has the replica opened. Replicas which are marked Intermediate cannot be opened for read

or write, nor can they be unlinked or renamed.

Replicas are created in the Intermediate status for data moving operations because the replica is considered in-flight

until the time that it is finalized in the catalog. In this way, the replica status is accurately represented in the catalog

and the system is able to respond appropriately to concurrent access attempts to this replica.

Truth Corruption and Logical Locking

However, it is unclear which replica for a given Data Object represents the Truth when multiple replicas are in flight

at the same time. Protecting individual replicas is not enough to verify the correctness of the data at the logical level.

To address this, a new mechanism called iRODS Logical Locking (ILL) has been introduced which disallows opening

any replica for a given Data Object when any one of the replicas are opened for write. This has been implemented

using another new (fourth) replica status:

5
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Write-Locked: One of this replica’s sibling replicas is actively being written to but it is, itself, at rest. Replicas which

are Write-Locked cannot be opened for read or write, nor can they be unlinked or renamed.

By only allowing coordinated modifications to a Data Object, assertions about the correctness of the logical Data

Object can be made based upon the correctness of a replica because multiple replicas cannot simultaneously claim to

be correct (while potentially holding di↵erent data).

Policy Violations and Operation Locking

We have not yet addressed the third problem of uncoordinated, concurrent policy invocations in iRODS. This is

addressed in the Future Work section later in this paper.

SOLUTION - DESIGN

iRODS Logical Locking operates on the basic principles of a traditional read-write lock in computing[3]

1. The Data Object is locked when any of its replicas are opened.

2. The Data Object is unlocked when the opened replica is closed/finalized.

Here, we describe this process in more detail:

The Data Object is locked when any of its replicas are opened
1. Client requests to open a replica of a given Data Object.

2. iRODS checks the status of the replica to make sure it is not already locked (equivalent to trying to ”acquire”

the lock). ”Locked” in this case means:

(a) the replica is Read-Locked (this or a sibling replica is opened for read by an agent): the operation will fail

if it is not an open-for-read.

(b) the replica is Write-Locked (a sibling replica is Intermediate): the operation will fail.

(c) the replica is Intermediate: the operation will fail for an uncoordinated open-for-write or any open-for-read.

See the Implementation section below for details about concurrent write coordination.

(d) If the open intends to create a new replica, the operation will fail if any replica is found not to be at rest

(that is, Intermediate, Read-Locked, or Write-Locked).

3. Depending on the operation, the Data Object is then locked for this open. ”Locked” in this case means:

(a) open-for-read: the status of all replicas is set to read-lock

(b) open-for-write: the status of the target replica is set to Intermediate and the statuses of the sibling replicas

are set to Write-Locked

(c) open-for-create: the statuses of any existing sibling replicas are set to Write-Locked

4. The target replica is then physically opened and the open is complete. If a new replica is supposed to have been

created, the entry is created in the catalog in the Intermediate status.

As we will see later, there is still a race condition here: the TOCTOU[4] condition in the iRODS catalog itself. We

have designed a solution for this which will be described later, but we mention it here to acknowledge its existence.
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The Data Object is unlocked when the opened replica is closed/finalized
1. The client requests to close and finalize a replica of a given Data Object.

2. The Data Object is unlocked atomically along with updating the other system metadata. The final states of the

replicas depends mainly on the operation requesting the close. The general cases for unlocking are shown here,

but some operations (e.g. replication, phymv, etc.) may behave di↵erently as they have di↵erent requirements:

(a) open-for-read: if no other agents have any of the replicas opened, the replica statuses of each replica is

restored to what it was before the open

(b) open-for-write: there are two cases:

i. success: the target replica is marked Good and all sibling replicas are marked Stale

ii. failure: the target replica is marked Stale and all sibling replicas have their statuses restored to what

they were before the open

SOLUTION - IMPLEMENTATION
Code Facilities

Two mechanisms were developed to implement Logical Locking:

1. data_object_finalize API plugin (finalize) - atomically applies updates to (multiple) rows in R_DATA_MAIN

2. replica_state_table (RST) - An in-memory, per-agent JSON structure which describes a snapshot of rows in

R_DATA_MAIN for a particular data id representing a Data Object

A library was developed under the irods::logical_locking namespace in the server on top of these utilities which

makes surgical edits to the RST and updates the catalog via the finalize API to atomically update - and therefore

unlock - Data Objects. As described in the design, Data Objects are locked on open and unlocked on close/finalize

using this logical_locking library.

Refactoring iRODS Internals

Much refactoring was necessary in the iRODS server for a correct first attempt at an ILL implementation and to

fix critical existing issues, all while maintaining the existing client-facing interfaces. In order to ensure that ILL is

enforced across the API surface, the requirements described in ”Unifying data movement with replicas as First Class

Citizens” needed to be put in place. This accomplishes both the aforementioned consistency and correctness of data

movement throughout the system, and a single entry point for using ILL.

A major shift was made internally in the iRODS server away from relying on rsDataObjClose to handle the logic of

finalizing replicas as has been done historically. Each operation has its own requirements for how the replicas in a

Data Object should appear for success or failure cases and in many cases they di↵er from those of other operations.

The finalize API plugin is now used in conjunction with the replica_close API plugin to determine and control

how replicas should be updated after the completion of an operation. rsDataObjClose can still be used to close and

finalize a Data Object, but the resultant replica statuses are handled generically.

Coordinated, concurrent write support

To support concurrent writes to the same replica which enables parallel data transfer using multiple iRODS agents,

another mechanism was developed called the Replica Access Registry (RAR). The RAR is held in shared memory so

that agents spawned from a particular iRODS server can coordinate concurrent writes to particular replicas. When

an iRODS agent opens a replica for write (or create) an entry is created in the RAR which associates an agent PID

with a replica of a Data Object and is accessed via a universally unique identifier called a Replica Access Token

(RAT). This token is part of the L1 descriptor held in the agent process which initiated the replica open. This token

allows other iRODS agents connected to the same server to open the same Intermediate replica.
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Using these tokens, clients can now implement parallel data transfer to a single replica over the main iRODS port.

This has been demonstrated both in the C++ client API with the Parallel Transfer Engine (PTE) and in the Python

iRODS Client (PRC)[6] version 1.0.0.

KNOWN LIMITATIONS

As with most features, ILL does not protect against rogue administrators.

Performance

Now that the server is enforcing coordination of writes across the iRODS Zone, this necessarily means more trips to

the iRODS Catalog to query for information and modify rows to update replica statuses. These additional round trips

to the database will introduce some marginal overhead, but for most data-write operations, they are still dwarfed by

the time for actual data movement.

The Database Race

ILL is currently still prone to database race conditions in the iRODS Catalog due to a classic TOCTOU[4] problem

which allows multiple winners for the race. The scenario arises when two agents arrive to lock a Data Object at the

same time. The lock is first checked and then set if it passes. All at-rest, unopened Data Objects are eligible to be

locked. The two agents will both find that the Data Object is unlocked and then go to the database to set the status.

The database will not stop this and both agents will think that they have exclusive access to their respectively opened

replicas of the Data Object.

We believe this can be solved by causing the check and set of the replica statuses to be a single database transaction.

The system will lean upon the locking mechanism of the database and the lock cannot be ”acquired” by more than

one agent and so there can be only one winner.

FUTURE WORK
Policy Violation (Operation Locking)

The third problem listed before is violations in configured policy due to uncoordinated, concurrent policy invocations

which incur data-modifying operations. We think that this will be solved by operation-aware logical locking, or

Operation Locking. Where ILL is currently gated on opening and closing replicas of a Data Object, Operation

Locking would be gated on the start and completion of a high-level operation.

As described before, open and close are considered ”low-level” interfaces where things like put, replication, and

physical move (phymv) are ”high-level” and are built upon the low-level interfaces. Operation Locking would move

the locking mechanism up from open into the higher level interfaces so that locking can be controlled across multiple

data-modifying operations resulting from policy invocation. In this way, policy invocation will be made more correct

and even enable coordinated, concurrent data movement within the policy-triggered operation(s). This will require

extending ILL to make iRODS agents more aware of which lock(s) they have acquired.

An example of when this would be useful is when a client puts data into a resource hierarchy which includes a repli-

cation resource with multiple child resources. Without Operation Locking, the time between the multiple replication

operations is subject to a race condition where other clients could be writing to the same Data Object.

Read Locks

The goal behind ILL is to implement a readers-writer lock[3] on Data Object resources via the replica status in the

iRODS Catalog. A read lock will allow for multiple, uncoordinated agents to read from any replica in a Data Object

at the same time. When a Data Object is Read-Locked, all data-modifying operations should be blocked (open for

write, unlink, rename, etc.) Unlike write locks, which require coordination to lock and unlock properly, read locks

will allow for uncoordinated reads. This means that ILL will need to be extended to track a list of agent PIDs and
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hostnames which are holding the lock. This may imply a refactor of the current lock implementation so that the

solution can remain generic and possibly bring it more in line semantically with traditional locks/mutexes.

SUMMARY

After more than two years of planning, development, and testing, iRODS 4.2.9 introduces Logical Locking which

protects the iRODS system from uncoordinated, concurrent writes to replicas of a particular Data Object. This is

implemented by adding two additional possible replica statuses, Intermediate and Write-Locked.
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ABSTRACT 

RUG Research Data Management System (RUG RDMS) is powered by iRODS. It is developed at the University of 
Groningen to store and share data, and allow collaborative research projects. The system is developed based on open-
source solutions, providing access to the stored data by means of command line, WebDAV, and a web-based graphical 
user interface. 

The system provides a number of key functionalities and technical solutions such as metadata template management, 
data policies, data provenance, and activity auditing. It uses some of the existing iRODS functionalities and tools like 
the iRODS audit plugin to track the data operations or the iRODS rule engine plugin for Python to implement a set of 
custom developed rules. It allows users to configure and tune metadata templates for different research areas. 
Furthermore, iRODS advanced rule and composable resource functionalities have been used to automate metadata 
extraction on demand and allow long term storage on magnetic tapes. In addition, a set of custom system policies that 
is used for data handling has been developed. This provides a flexible environment on top of the current iRODS rules. 
Data replication on the storage level guarantees full data recovery. 

The system is accessible via the local HPC facilities and provides a landing zone to support data to compute. The 
architectural design of the system allows both vertical and horizontal scalability with the potential of unifying different 
iRODS installations and facilities. 

Keywords 

RUG RDMS, metadata templates, data policies, iRODS Python rule engine plugin, iRODS auditing module. 

INTRODUCTION 

The general lack of centralized data storage and management within research institutions increases the risk that 
valuable data disappears or is more difficult to find. Moreover, datasets are increasing in volume, complexity, 
heterogeneity, and speed of generation [1]. This is why the demand for high quality and intuitive scientific data 
management tools is high and most of the funding agencies nowadays require a data management plan in an early 
stage of a research project. As a research output, data are often compared to a public good that should be made 
available to the community for re-use if possible. There is a growing demand for research data integrity, quality, public 
availability, and reusability, the FAIR principles [2]. In the context of research data management, the documentation 
of research data is an essential duty. In order to ensure the interpretability, understandability, shareability, and long-
lasting usability of the data, any data management system should support standardized, and interoperable metadata. 
Effective data management can actually contribute to the increased pace of the research process, contribute to the 
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soundness of research results, and meet funding agency requirements by making research data easy to manage and 
share over the long term. A good example of such a system is YoDa, created at Utrecht University, Nederlands [3][4].   

The RUG Research Data Management System (RUG RDMS) system has been developed to support the scientific 
research community at the University of Groningen [5] and University Medical Center Groningen (UMCG) [6] in the 
process of handling its research data. It provides an inhouse solution for the data storage, data access management, in 
addition to data management policies. 

ARCHITECTURE  

The main idea behind the architecture of the RUG RDMS is to split the system into a number of services that do not 
depend on the implementation. Figure 1 illustrates a number of logical components and the decisions that were made 
in the design of the RUG RDMS to make it a scalable and robust system. The system has been designed to store vast 
amounts of data, while keeping everything on-premises. The backend is based on iRODS [7][8], an open-source data 
management software that supports collaborative research effectively. iRODS is data-grid middleware that virtualizes 
access to data regardless of which physical device the data is stored on. It accomplishes this by mapping physical files 
and directories to logical data objects and collections. Users can make use of various interfaces to search for and 
retrieve data. In addition to facilitating data discovery and retrieval, iRODS has a robust security system to implement 
fine grained access control and facilitate robust activity auditing. The defining concept of the RUG RDMS is using 
iRODS’ powerful metadata storage and discovery functionality to document the data stored in it. 

 

Figure 1. Users interface with the RUG RDMS in one of three ways: the web front-end, a WebDAV connection, 

or the iRODS CLI. Three iRODS catalog providers access a single PostgreSQL database and sit behind an 

HAProxy.  The nine current resource servers (iRODS consumers) have multiple volumes “mounted” from a 

local storage server. The RUG RDMS storage is composed of 3 big storage servers located in three different 

data centers. These servers utilize a ZFS filesystem pool with built-in support for data-deduplication, 

compression, 'self'-healing, and software RAID among other features. 

The RUG RDMS is configured such that it should survive broken data disks (spare and hot swappable), broken 
volumes, broken servers, one downed data-centre, small scale network outages, etc. Maintenance can also be 
performed easily, since resource virtual machines are small and can be moved or migrated if needed. There are several 
iRODS zones with the possibility to add new zones when necessary. Currently, next to the iRODS zones dedicated 
for the development, the production iRODS zones include one for the majority of the university projects and one for 
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the collaboration with the UMCG. In addition to the online storage resources, there is a nearline, long-term archive 
resource utilizing a tape storage system. 

APPLICATION DESIGN AND WEB INTERFACE 

Illustrated in Figure 2, the whole system is divided into a number of components intended to be independent services 
with their own setup and configuration: 

• Proxy: the main and only entry point for the Web Interface. The proxy service is implemented using Nginx 
[9], the most popular proxy server.  

• Web Server: The RUG RDMS uses Django as a base framework to deliver web content in combination with 
RUG css templates and Bootstrap 4 libraries. Django [10] is a high-level Python Web framework that 
encourages rapid and clean development and powers many of the Web’s sites. 

• Backend: iRODS with the rule engine plugin for Python and custom iRODS rule bases dedicated to the RUG 
RDMS functionality. Such rules include blocking of select operations on (meta)data, automatic metadata 
extraction, notification messages, etc. 

• REST-like services within a private network: all other services that RUG RDMS uses in the intermediate 
level are based on REST APIs [11] or have a direct connection to the mid-tier database. This design choice 
makes internal communication between different modules of the system independent from the particular 
programming code of a service. For instance, communication with the iRODS backend is done via the Java 
Jargon API using Jersey REST API [12] and the Apache Tomcat Web server [13]. However, in the near 
future, there is a plan to switch to Python iRODS client implementation. This transition is especially easy 
because the implementation of the REST calls from the other parts of the system to iRODS will be the same.   

• Davrods [14] and NFSRODS [15]: DavRods and NFSRODS are two implementations of a standard file 
system protocol to mount iRODS data as a filesystem directly on the client side.  

• iCommands [16] access for the users: collectively, the iCommands are a default iRODS tool that is used to 
manage data on the server and on the client side.  
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Figure 2. RUG RDMS Logical Architecture 

Since the beginning of the project, there have been several versions of the web interface. Our current solution has 
many similarities to typical cloud storage interfaces’ look and feel as shown in Figure 3. 

1. The first logical type of the data is in the user’s data area. It is a collection in which the user is the sole owner 
and manager of the data. 

2. The second logical type is in the team drive. A team drive is a shared area that can be created and managed 
by data managers. Each scientific group can have their own data managers. Within RUG RDMS, data 
managers are users with the iRODS groupadmin role. Users with this role are allowed to create and manage 
iRODS groups. The idea behind the team drives is to provide users with a collaborative working area with 
flexible permission management.   

3. The third logical data type resides in the project area. It contains all the facilities to fully support the data 
lifecycle management. Project collections can be created and managed by another special group of users: 
project managers. When a new project is created, three dedicated user groups are immediately attached to it. 
These groups have read, write and ownership of the data, respectively. Every user who is a member of a 
project will be at least a member of the read user group. Users that are considered owners of the data will be 
added to all three groups. A user that has write access to a project will be included in the write and read 
groups. This approach allows for fine grained permissions of the inner project data and archived data. 
 

 

Figure 3. Main user landing page at RUG RDMS with its inbuilt data browser. The left panel shows the 

directory (collection) browser. The right panel shows the contents of a selected collection: data objects 

and sub-collections. 

The metadata and metadata handling constitute another important aspect of the interface and its data management. 
RUG RDMS supports standard iRODS metadata operations enriched with custom rules. One such custom rule is 
automatic metadata extraction from standard data formats such as JPEG, TIFF, FITS, PDF, etc. This rule is triggered 
manually from the web interface or from the command line. It extracts all available metadata from a physical file 
having the supported format. With the evolution of the system the list of supported formats will only grow and the 
expansion of metadata templates will be used to choose what metadata is extracted and how it is stored. The interface 
workflow for running this metadata extraction is presented in Figure 4. 
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The automatic metadata extraction runs as a delayed rule on the iRODS backend that is submitted as a background 
job. While the results of the extraction may sometimes not be directly visible on the web interface, the user can follow 
the status of their submitted jobs on a dedicated page. Before such a background process starts, the process is first 
registered in the RUG RDMS mid-tier database. By using the mid-tier REST database service, the custom Python rule 
reports to the RUG RDMS about the process status.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. RUG RDMS web interface automatic metadata extraction. The four panels show (a) the right 

click action menu, (b) a screen with the background extraction process running, (c) the final result of the 

extracted metadata, and (d) extra information about the background extraction process. 

CUSTOM POLICY ENGINE 

Implementation of user workflows is one of the major requirements for the RUG RDMS. During the requirements 
engineering phase, it became clear that different research groups apply their own field-specific data processing, storage 
formats, and operational algorithms. A custom policy engine has been developed for this purpose. It utilizes the iRODS 
rule engine plugin for Python in combination with the mid-tier RUG RDMS architecture and iRODS metadata on 
particular collections and data objects. One needs to add special metadata to an object to initiate a custom policy. 

iRODS metadata consists of three values: key, value, unit. Key – to identify metadata; value – to store actual metadata 
value; unit – an extra field that can be used for different purposes.  Below there is an example of the metadata policy 
attached to the project collection «/testZone/home/Projects/project0_5n1»: 
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Name : sysmdt_rdms_policy_2c7197f0a89e1c842180756537534a81a069be79e8ec6fa1473af21c 
Value: { 

"policy_name"      : "project_user_participation_enddate",      

"policy_creator"   : "atsG",  
  "input_parameters" :  

{ 
    "user_name"   : "atsG",  
    "end_date"    : "10/06/2021 11:52",  
    "date_format" : "%d/%m/%Y %H:%M" 

} 
} 

Unit : POLICY|PROJECT|TORUN|atsG  
 

To make a key-value pair unique, the object name is transformed into a non-reversible hash value and this is added to 
the key name. In the example above “/testZone/home/Projects/project0_5n1” equals to hash: 

2c7197f0a89e1c842180756537534a81a069be79e8ec6fa1473af21c  
 

The unit field is used to make this policy correctly searchable and executable on the iRODS server side. It also stores 
the type of the policy, status and the name of the user who initiated the policy. 

The value field contains a JSON string with the information about the policy. This string is used to run Python code 
constructed from the "policy_name" and "input_parameters". Here is a code example to run such a JSON string: 

from .policy_project_user_participation_enddate import 
run_policy_project_user_participation_enddate 

 
C_AVAILABLE_POLICIES = { 
"project_user_participation_enddate" : run_policy_project_user_participation_enddate 
} 

  
# method to run policy that was fetched from the metadata of the object 
def run_policy(self): 
   l_function_name, l_parameters = self.parce_policy()# parse JSON 
   if self.policyIsValid(): 
       if self.c_namespace.C_AVAILABLE_POLICIES.has_key(l_function_name): 

           # execute code 
           self.c_namespace.C_AVAILABLE_POLICIES[l_function_name](self, l_parameters) 
  

After the policy metadata is set it is picked up by the server cron process illustrated in the diagram in Figure 5. 
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Figure 5. Shows a schematic view of the policy engine’s workflow. 

The Python code shown above could in principle allow users to inject malicious code into the JSON string. This will 
trigger server-side processes to operate on the data residing in the RUG RDMS. To avoid such an unauthorised 
operation, a policy validation mechanism is implemented in the mid-tier layer of the RUG RDMS. When a policy 
metadata is added to an object, the system generates an unique non-reversible hash value associated with the newly 
introduced policy. These values are stored in the mid-tier database and are used as guards to validate the user-requested 
policies. When a policy tag is added by a user, its hash value is generated and compared to the ones stored in the 
database. The process is triggered only when there is a match between the stored and computed hash values. 

METADATA TEMPLATES  

In recent years, researchers’ capability of gathering data have increased a great deal. Descriptive metadata is used by 
many fields and stakeholders, and has evolved from different communities with diverse discipline-specific objectives 
and backgrounds. Metadata can be seen as a formally structured and documented collection of information about data 
that reveals minimally what is in the data, where the data originated from, who produced them, when they were 
produced and modified, why they were produced, and how the data can be obtained. Metadata characterizing a dataset 
generally contains all the attributes that are relevant to the specific research domain, but might as well contain general 
measurement attributes such as number of instances, dataset dimensionality, or circumstantial information. Besides 
describing the data being stored, metadata can also be used as triggers to configure and customize automatic 
workflows.  

In the process of setting up RUG RDMS we have received several requests for metadata templates in different research 
domains, ranging from social sciences to archeology or microbiology. There is no one-size-fits-all solution, as each 
research domain has specific metadata attributes, and even within the same research domain there are large variations. 
By allowing users to define their own metadata schemas, we leave the definition of the metadata, which requires 
domain specific knowledge, to the domain experts. Metadata schemas define the general format of the metadata, that 
is, which elements are allowed, the number and order of their occurrences, of which data type they should be, which 
elements are required, etc. Because the technical skill of the user is also extremely diverse, RUG RDMS supports the 
use of JSON Schema templates together with a metadata template builder (Figure 6).  
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Figure 6.  Working principle of the metadata templates in the RUG RDMS system. 

This allows users to define their own tree-like types and type restrictions. These types of metadata attributes can be 
freely combined to build domain, and sometimes even user specific metadata templates. The definition of the metadata 
template tree of components is stored in the PostgreSQL mid-tier database. Based on the template definition an input 
form is dynamically built. The form handles the validation of the input values based on the template definition. When 
data has been validated, the form entries are serialized and stored as key-value-unit sets in iRODS. The same form is 
used to update the values of the metadata template fields. 

THE AUDITING MODULE  

The auditing module is using the iRODS audit plugin to store data operations in an elasticsearch database. This module 
contains functions to query operations on collections and data objects such as uploading, removing, moving, and 
downloading data. Figure 7 displays the auditing pipeline for the RUG RDMS system. The iRODS audit rule engine 
plugin can emit a single AMQP message for every policy enforcement point (PEP) encountered by the iRODS server 
which gets further pushed to the RabbitMQ service. AMQP stands for Advanced Message Queuing Protocol and it is 
an open standard application layer protocol for message-oriented middleware. The AMQP message emitted by the 
iRODS plugin has the information related to that particular operation, including username, filepath, filesize, etc. 
RabbitMQ is a message-queueing software also known as a message broker or queue manager. It is basically software 
where queues are defined, to which applications connect in order to transfer a message or messages. It also serves as 
a temporary location for messages by storing them while the destination application is busy or not connected. The 
messages in RabbitMQ are pulled by the ELK stack and can be displayed to the user. ELK is the acronym for three 
open source projects: Elasticsearch, Logstash, and Kibana. Elasticsearch is a search and analytics engine. Logstash is 
a server‑side data processing pipeline that ingests data from multiple sources simultaneously, transforms it, and then 
sends it to a "stash" like Elasticsearch. Logstash can dynamically unify data from disparate sources and normalize the 
data into several destinations. Any type of event can be enriched and transformed with a broad array of input, filter, 
and output plugins, with many native codecs further simplifying the ingestion process. Kibana lets users visualize the 
data in Elasticsearch with charts and graphs. 

 

Figure 7. Auditing pipeline for the RUG RDMS system. 
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The data stored in Elasticsearch contains information on the PEPs being triggered in the iRODS backend. There are 
custom queries to answer questions such as: who, when, and what operation was performed and on which data objects. 
To prevent the Elasticsearch database from rapidly growing out of control, configuring a regular expression for 
filtering becomes necessary so only the output of desired PEPs is retained. The exact regular expression used is: 

"(^audit_pep_api_((?!gen_query|auth_response|auth_request).)*_(pre|post)$|audit_pep_ap
i_auth_.*_except)"  

 

This states that the system is interested in logging activity from the api plugin (while specifically excluding 
authentication PEPs and general queries), but specifically including any authentication errors that may occur. 
Additionally, empty fields are filtered using a Ruby script in the Logstash configuration. We have observed that using 
these filters, around 95% of the messages are excluded from being stored in Elasticsearch.  The filters do not affect 
the data operation queries.  

In order to comply with the General Data Protection Regulation (GDPR) [17] and funding agencies requirements, the 
system is required in some cases to store the data including its audit trail for up to ten years. Despite the fact that the 
amount of data being stored in the ELK stack has been considerably reduced, the amount of data from the audit trail 
is still large. As a consequence, Index-Lifecycle-Management (ILM) policies for managing the indices have been 
implemented. In a cluster under this architecture, different types of nodes can be configured to balance performance 
and capacity. 

The exact Elasticsearch architecture is still a work in progress. We are considering a hot-warm-cold architecture, 
where the exact number of shards is yet to be decided. The four stages in the index lifecycle are: 

• Hot—the index is actively being updated and queried. 
• Warm—the index is no longer being updated, but is still being queried. 
• Cold—the index is no longer being updated and is seldom queried. The information still needs to be 

searchable, but it’s okay if those queries are slower. 
• Delete—the index is no longer needed and can safely be deleted. 

Additionally, we have considered using Snapshot-Lifecycle-Management policies to back up iRODS indexes 
periodically in a snapshot repository.  

CONCLUSION 
The RUG RDMS is a system for the research data storage and management. It is designed and built to meet the 
requirements of our local researchers and research groups. Using iRODS as a storage backend it delivers flexible and 
robust infrastructure. There are many challenges ahead. At the moment there are approximately seven pilot use cases 
employing RUG RDMS. The range of the projects is wide, from collaboration with library and publishing departments 
to tape storage of a large amount of data for astronomy. The RUG RDMS development team is looking forward to 
helping researchers at the university and working hard to deliver the system to the scientific community as an open-
source project.   
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ABSTRACT

Major research instruments operating at ever higher resolutions are generating orders of magnitude more data in

relatively  short  timeframes.  As  a  result,  the  research  enterprise  is  increasingly  challenged  by  what  should  be

mundane tasks: describing data for downstream discovery and making the data accessible (often with appropriate

access controls) to the broader research community. The ad hoc methods currently employed place undue burden on

scientists and system administrators alike, and it is clear that a more robust, scalable approach is required.

The Globus platform-as-a-service (PaaS) and, specifically, the Globus Flows service is increasingly used to easily

build and execute automated data flows in this context. We will describe how Globus platform services may be used

in  conjunction  with  iRODS's  robust  storage  capabilities  to  facilitate  automated  flows  that:  (a)  stage  data  to

intermediate storage, (b) extract and ingest metadata into an index for downstream discovery, and (c) manage access

permissions to allow secure sharing of the data with collaborators. We will use a Jupyter notebook to demonstrate

how Globus services are combined in this scenario, providing attendees with actionable code that may be easily

repurposed for their needs. We will also illustrate how such an automated flow can feed into downstream data

portals, science gateways, and data commons, enabling search and discovery of data by the broader community.
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ABSTRACT

The iRODS Globus Connector has recently been released and provides connectivity between Globus endpoints and

iRODS storage. This talk will explore the work required to port the GridFTP Data Storage Interface (DSI) into the

new Globus Connect ecosystem.
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ABSTRACT

This talk will cover recent changes to the iRODS NetCDF API plugins, iCommands, and microservices. This is

ongoing work and we are interested to hear about current and potential use cases with this technology.
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ABSTRACT

This paper explains tools we have created to enhance the interoperability and usability of iRODS storage. We have

added functionality to the eirods-dav Apache module to expose iRODS collections, data objects and metadata as

Frictionless Data Packages. Along with this we have created a tool to enhance the functionality of iRODS client

commands within a BASH terminal by allowing for TAB key filename completion for iRODS collections and data

objects.

Keywords

iRODS, FAIR Data, Frictionless Data, Bash

INTRODUCTION

The Grassroots Infrastructure [1] project aims to create an easily-deployable suite of computing middleware tools to

help users and developers gain access to scientific data infrastructure that can easily be interconnected. With the

data-generative approaches that are increasingly common in modern life science research, it is vital that the data

and metadata produced by these e↵orts can be shared and reused. The Grassroots Infrastructure project wraps up

industry-standard software tools along with our own custom open-source software tools to give a consistent API that

can be federated with others in terms of both data and services. This means institutions and groups can deploy a

simple lightweight software suite, locally or as a virtual machine, to expose institutional data, connect up any existing

data services, and federate their instance of Grassroots with other remote instances.

One of the major aims of the Grassroots Infrastructure is to allow users to share their wheat data, although it is

by no means organism-specific, as easily and seamlessly as possible based upon FAIR data principles [2]. For data

storage, we use the iRODS [3] data grid system that gives users access to potentially di↵ering file systems and data

resources through a single data abstraction layer. Users are able to carry out typical filesystem actions as normal, such

as creating files and directories and maintaining permissions, along with extra features such as distributed storage

viewable across di↵erent institutions and the ability to add extensive metadata to files and directories.

Using iRODS as our data storage infrastructure, we looked to see what we could do to enhance its functionality and

usability for both internal users accessing the system using the standard iCommands and external users by adding

interoperability APIs. We now describe some functionality that we have added in both of these areas.

FRICTIONLESS DATA

The Grassroots Infrastructure is an integral part of the Designing Future Wheat (DFW) programme [4] and one of

the tasks it is used for is to host a portal to share the datasets produced within the programme. These datasets can

vary greatly in size and their data is heterogeneous so one of our goals is to standardise access to these datasets. As

part of the goal to make the data FAIR as much as possible, we looked at how we could increase the interoperability

iRODS UGM 2021 June 8-11, 2021, Virtual
Copyright (c) 2021, The Earlham Institute

1

37



of these datasets. Given their heterogeneous nature, we needed a solution that was both flexible and extensible, along

with having good support and tooling for any APIs that are provided. The solution that we found was Frictionless

Data [5] which are an open set of data standards and provides software to work with data. Frictionless Data Packages

are a container used to describe and package collections of data into JSON objects. These packages can store any

types of data and metadata and be used with an existing set of Frictionless schemas as well as being extensible by

using any custom schemas as well.

Basic Frictionless Data functionality

The Frictionless Data support can be configured to only be active at particular points in the Apache directory hierarchy

using the DavRodsFrictionlessData configuration directive. For example, to have the data packages appear in all of

the top-level child directories of /data, but not in subsequent child folders of these, the configuration would be:

# Generate Data Packages for all child directories directly below /data

<LocationMatch "/data/[^\/]+/">

DavRodsFrictionlessData true

</LocationMatch>

# Since Data Packages are generated for the child directories configured in

# the line above, exclude all directories further down

<LocationMatch "/data/[^\/]+/[^\/]+/">

DavRodsFrictionlessData false

</LocationMatch>

To give a useful visual indicator to denote the Frictionless Data Packages files within the generated listings pages,

a custom image can be specified using the DavRodsFDDataPackageImage configuration directive which specifies the

path to the image file to use for these packages. For example,

DavRodsFDDataPackageImage /eirods_dav_files/images/archive

would use the image at /eirods dav files/images/archive to represent the Data Packages in the generated web page

listings.

Metadata configuration

Each of the datasets come with a standard set of metadata based upon the Minimum Information About a Plant

Phenotyping Experiment (MIAPPE) [6] which is an open set of standards to allow for easier integration of data

from plant phenotyping experiments. Each project has metadata that contains the list of authors, the name of

the project that the dataset comes from, a title for the project, a description of the project, the licence and a

unique persistent identifier for the dataset. These metadata values all exist within the Frictionless Data Package

standard thus making the task of connecting the iRODS and Frictionless technologies together straightforward. The

default mappings of iRODS metadata keys to their Frictionless counterparts along with the relevant Apache module

configuration directives are shown in table 1. All of these values are completely configurable using the Apache module

configuration directives. For example, to use the value associated with the metadata key project title from the iMeta

catalog for the title field of the Frictionless Data Package, you would need the following configuration setting:

DavRodsFDResourceDescriptionKey project_title

The metadata values stored in iRODS can be combined where necessary to produce the value required for the

Frictionless Data Packages. The configuration directives can be set by a comma-separated string containing the iRODS
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Data Package field Default iRODS metadata key Apache Configuration Directive

license_name license DavRodsFDResourceLicenseNameKey

license_url license_url DavRodsFDResourceLicenseUrlKey

description description DavRodsFDResourceDescriptionKey

name name DavRodsFDResourceNameKey

authors authors DavRodsFDResourceAuthorsKey

title title DavRodsFDResourceTitleKey

id id DavRodsFDResourceIdKey

Table 1. Default mapping of metadata keys between iRODS and mod_eirods_dav Frictionless Data Packages

and the Apache module configuration directives.

metadata keys to use. For instance, if the value that you wish to use for the description is given by concatenating

the short info and detailed info metadata values, then the configuration would be:

DavRodsFDResourceDescriptionKey short_info,detailed_info

As well as specifying the keys, white space, periods / full stops and newlines can be specified in the configuration value

too. With the example above, if you would like to have a more complex value generated using the short info metadata

value followed by a period / full stop and two blank lines (denoted by the \n escape code), then the detailed info, a

space and the footnote metadata value, the configuration would be

DavRodsFDResourceDescriptionKey short_info,.,\n,\n,detailed_info, ,footnote

Frictionless Data tabular support

One of the schemas available as part of the Frictionless Data standards is for Tabular Data Resources which is

designed to represent tables of data. Eirods dav has the ability to automatically take tabular data objects such as

csv or tsv files and store them as Tabular Data Resources. This is done by querying the iMeta catalog for the given

data object. The first required key is column headings which has a comma-separated list of the column headings for

the tabular file. For each of these headings an additional key-value pair specifies the type of data in the given column

of the file. The keys for these are the column name with a type su�x. The core values that these types can take are

defined as part of the Frictionless Data Table Schema [7] which in turn are based open those from JSON Schema [8].

These include types such as strings for text, number for floating point values, integer for whole numbers, etc.

For example, consider a file data.csv which has three columns containing a string, an integer and a floating point

number respectively, shown below

var1,var2,var3

A,1,2.1

B,3,4.5

Using the Tabular Data Resource type definitions, the types of these columns are string, integer and number respec-

tively. Eirods dav begins by looking for the column headings key in the iMeta catalog for data.csv which in this case
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would be

column_headings: var1,var2,var3

This value is then tokenized by splitting this string into separate values using the comma delimiters. In our example

this would bevar1, var2 and var3. Eirods dav then appends type to each of these to produce the names of the iMeta

keys to use to query for the datatype of each column. In this case, these would be var1 type, var2 type and var3 type.

This would make the required metadata key-value pairs

var1_type: string

var2_type: integer

var3_type: number

Frictionless Data Package storage

By default, the Frictionless Data Packages are virtual and generated on the fly for each incoming request. Although

this may be fine for smaller datasets, as they grow in size the time that it takes to generate these packages increases

and thus may have a perceivable impact upon serving these requests. To address this problem, there is the ability

to write the generated Frictionless Data Package back to its parent collection, in e↵ect, caching it. This is done

by setting the configuration directive DavRodsFDSaveDataPackages to true and is equivalent to running iput for the

generated file. If the content of the dataset changes, this generated file would become stale and need to be regenerated.

Eirods dav checks for the existence of this file upon each request so by simply deleting this Frictionless Data Package

file, eirods dav will automatically regenerate it upon the next relevant incoming request.

BASH

One of the features that is available in many command-line environments is the ability to generate matching paths

given partial file and directory names. For users on Linux, the common command-line terminal is Bash. An extremely

useful feature of Bash is the ability to complete any text that has been typed in the shell up to that point by pressing

the TAB key. As standard, iRODS does not come with this feature for the components within its iCommands package.

As the number of nested levels within the iRODS zones increases, the time that it takes to type these commands and

the likelihood of mistyping a path becomes greater, and the usefulness of auto-completion is lost

To address this issue, we created iRODS Bash Completer[9] to fill this gap by implementing tab-completion for the

various iRODS client iCommands. The Bash shell can take advantage of the iRODS Bash Completer to auto-complete

paths for the data hosted in iRODS in the standard way as it does for other mounted file systems. It does not require

any escalated user privileges to use and has no dependencies other than the libraries within the iRODS development

package. When the TAB key is pressed, it parses all of the available iRODS zones that the current user has access to

and produces a list of data objects and collections that match the partial path that the user has currently typed in. If

no text has yet been entered, it can be used to traverse through the entire hierarchy of the iRODS-hosted data. The

installation process requires a small number of steps beginning with building the irods bash completer program using

the makefile within the repository. Once this is built it can be copied anywhere that the user wishes. The iRODS

Bash Completer can be configured for each of the iCommands, or indeed any third party application, by editing

the supplied bash/icommmands.d file to specify where the irods bash completer has been installed. This is done be

setting setting the first part of the opts variable within this file to the path where the iRODS Bash Completer has

been installed. For example, to specify that it has been installed to /home/billy/bin/irods bash completer the initial
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part of the bash/icommmands.d would be

_irods_completer()

{

local cur prev opts

COMPREPLY=()

cur="${COMP_WORDS[COMP_CWORD]}"

prev="${COMP_WORDS[COMP_CWORD-1]}"

opts=‘/home/billy/bin/irods_bash_completer ${cur}‘

Any other iRODS-aware commands can have TAB completion enabled by adding an entry to the end of this file.

For example, this functionality can be enabled for a third party program called irods examine, say, by adding the

following snippet

complete -F _irods_completer irods_examine

to the end of bash/icommmands.d.

Once you have completed the configuration, copying bash/icommmands.d into the /etc/bash completion.d/ directory

will complete the installation and enable the TAB completion functionality.
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ABSTRACT

Observability is an emerging practice for measuring and interpreting the pulse of complex and distributed software

systems. Software developers and IT teams need to understand when and why there is an abnormal behavior, how to

mitigate that within a short time. With the acceleration of complexity, scale, and dynamic architectures coupled with

automatic software patching, malicious intrusions and system breakdowns, high throughput system need more than

to react to events but proactively predict and mitigate anomalous behavior before it happened. Challenges due to

multiple combinations of things going wrong, and sympathetic reinforcements of faults can make it hard to track how

errors are manifesting and how a system is behaving. Observability couples the ability to capture runtime telemetry

with a visual and reasoning system that can detect and pinpoint abnormal behavior deep in the system before it

can a↵ect the performance of the whole system. Introduced first in control theory, observability is a measure of how

well internal states of a system can be inferred by knowledge of its external outputs. The iRODS software system

is not only a very complex and dynamic system it is also being increasingly deployed with other complex software

on distributed infrastructures that rely on its high throughput and reliability. An introduction to the concept of

observability in iRODS would be very helpful for making sure that a deployed iRODS installation is operating in an

optimal manner. Moreover, with observability built into iRODS, one can find operational anomalies in systems that

are relying on iRODS and help mitigate them. The iRODS system already has a very strong measurement capability

through its logging. Enhancing its capability with tracing, session replay, learning and analysis systems that can

provide actionable insight would take iRODS to the next level of performance and resilience. In this paper, we look

at various ways one can enhance iRODS to become a highly ’observable’ system.

Keywords

iRODS, observability, metrics, logs, traces

INTRODUCTION

Observability[1, 2, 3] is the ability to understand the inner workings of a system by observing the external behav-

ior. Originally described in control theory[4, 5], it is being increasingly being adopted by software engineers and

system administrators to monitor system malfunctions and if possibly proactively preempt any such malfunctions.

As the complexity of systems increase due to using multiple chained services, parallel and distributed processing, and

multi-cloud environments there is a concomitant increase in pressure to maintain operational viability and graceful

degradation of services. Hence reliability engineering and DevOps[6] are increasingly looking at observability as a

means to provide better and more reliable and resilient services. With distributed data, computing and higher reliance

on networking problems can crop up at multiple levels and become apparent only at a later stage as critical systems

start to fail and there is a chain reaction e↵ect leading to eventual shut down of the system. Even small failures

can be a problem which can crop up because of a sequence of events in a distributed system and hence need to be

captured and solved and made resilient in the future.

iRODS UGM 2021 June 8-11, 2021, Virtual
[Authors retain copyright.]
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In computing systems, reliant on distributed hardware, multiple networking interconnects (from LANs, WANs and

clusters) and distributed software services, developed by di↵erent vendors, reliability of the whole system to operate

at an optimal level is of high concern. Observability provides a proactive way to monitor a large system and develop

strategies in case of failures. In software and hardware systems, observability is achieved by measuring system

critical components through various sensors and telemetry systems for hardware and logs and metrics and traces

for software systems. Observability is implemented using a combination of instrumentation methods including tools,

such as Grafana[7], OpenTelemetry[8], Splunk[9], SigNoz[10], etc. Observability empowers cross-functional teams

(IT Admins, system developers, application engineers, managers) to identify problems before they even manifest

or become unmanageable. Observability helps increase performance, availability, resiliency and user satisfaction by

enabling one to realize what is slow, what is broken, and to quickly figure out what needs to be done to improve

performance.

With the increased complexity of software system, it is highly becoming crucial to apply observability principles in

order to run a viable enterprise. An innocuous update in an obscure software package can have a cascading e↵ect.

Finding problems and correcting them can be a nightmare and going beyond that, predicting failure and degradation

of services can be rewarding but highly challenging. Moreover, with privacy and security considerations becoming

increasingly important, observability can be key factor in finding anomalies and intrusions in a highly distributed

networked system.

The integrated Rule Oriented System (iRODS)[11, 12, 13, 14, 15] is an open source software used for large-scale data

management software used by research, commercial, and governmental organizations worldwide. It virtualizes storage

system and presents a unified view of all digital artifacts stored under its management. The fundamental di↵erence

that iRODS brings to distributed data management is its provision of a rule-based operational characteristic Users,

administrators and system developers can write complex rules to govern the management of their data throughout

its data life cycle. These rules can apply from a single file-level to the whole system level. The application of the

rule is governed by conditions and can be applied on an event, periodically or at any arbitrary time by the user or

administrator. These rules govern all aspects of the data management from file ingestion to storage, from access to

deletion from the system. Indeed, one can override all default and built-in operations implemented in the iRODS

system to completely perform an entirely di↵erent set of operations that is suitable for the enterprise. Hence the

iRODS system provides a far more challenging environment for performing observability compared to a static system

whose actions are mostly defined as per the original developers’ intent.

iRODS implements a complex and dynamic system that spans multiple services that run on distributed hardware

across the wide area network. It is also being increasingly deployed with other complex software on distributed

infrastructures that rely on its high throughput and reliability. An introduction to the concept of observability in

iRODS would be very helpful for making sure that a deployed iRODS installation is operating in an optimal manner.

Moreover, with observability built into iRODS, one can find operational anomalies in systems that are relying on

iRODS and help mitigate them. The iRODS system already has a very strong measurement capability through its

logging. Enhancing its capability with metrics, tracing, session replay, learning and analysis systems that can provide

actionable insight would take iRODS to the next level of performance and resilience. In this paper, we look at various

ways one can enhance iRODS to become a highly ’observable’ system.

MONITORING FOR OBSERVABILITY

Monitoring observability relies on three main concepts: metrics, logs, and traces. These three are considered the pillars

of observability. One needs to add monitoring and telemetry to instrument both the software and the hardware to

gather useful information that can be used to find if the system is running in a sub-optimal manner or to predict

potential problems down the road. When a fault is detected, analyzing these three measures will be helpful in

pinpointing areas of concern.

Metrics are the operational characteristics that are collected to define what is the optimal performance for a system.

These are derived over time based on system performance. Types of metrics include response time for a service (micro-
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service), uptime and downtime of systems, number of requests serviced during a period of time (e.g. concurrency),

load of the system including cpu, memory and network utilization, etc. In many cases, service level agreements (SLA)

or service level objectives (SLO) provide the metrics that need to be met for providing required performance. Metrics

provide the baseline to which one can compare operations at the current level to find any anomalies. Moreover,

metrics provide a means to detect degradation of service. More metrics is defined and continuously monitored, the

better will be the reaction time to solve problems or preempt them before they become critical. Service level indicators

(SLI) provide the measurement that detect the service behavior at the current time. Comparing SLI against SLO or

SLA provide a measure of the performance. SLI can be used not just to measure if the system is meeting current

requirements but it can also be used to find slack in the system that can be utilized to provide more service without

upgrading the system. As the SLI shows a degradation against an SLO or SLA, then solutions to improve service –

such as bringing an additional server online or performing better load balancing – would be needed. Similarly, Key

Performance Indicators (KPI) are also necessary metrics that capture data about crucial performance measurements.

KPIs provide the necessary baseline data that can be used for strategic and operational improvement and to provide

an analytical basis for decision making. KPIs helps by setting targets that capture the most important critical

metrics for the success of a system and help focus attention on what matters most. KPIs and SLIs together help to

assess progress towards optimal performance results. They are critical for tracking e�ciency, e↵ectiveness, quality,

timeliness, governance, compliance, system performance and resource utilization.

Logs are basically outputs written by software procedures to record their operations. Hence in a well-written procedure

or micro-service, print statements to a log device (either a log file, or a message to a queuing system or to a remote

recorder) capture the current status and actions of the procedure. Since they are written by the system developer,

these can be highly structured and provide enormous details about the status of the system as well as about the

operation being performed. For example, key log outputs can be written when a process enters a micro-service and

when it exits a micro-service. In such a case, some entry data can be part of the log, and because there can be more

than one exit point for the micro-service, details of such exit, normal or abnormal, can be captured. In particular,

these two entry-exit logs will have fine-grain timestamps and provide a measure of how long the process took to

perform this micro-service. Log analysis can help to uncover abnormal, unpredictable and emergent behaviors by

procedures. Logs are easy to generate provided the system developer has instrumented the code appropriately. In

many systems, there may be multiple levels of logging and the administrator can choose the level that would be

comfortable for the system. Since a logging operation take a finite amount of time, intrusive logging by themselves

can slow down the function of a procedure. Hence one needs to be aware of how much of logging is desired to

monitor the system against the degradation of service that is introduced by the logging process. Distributed logs

(logs gathered from distributed systems) are normally gathered at a central location and analyzed. Such analysis

provides a means of finding the reliance of one system over other and can be used to drill down when an operation

takes more time than normal.

Tracing is the concept of capturing the journey of a user request from start to finish and to find what are all the services

and components that are involved in answering that request. Particularly in a distributed system, tracing provides

a means to find all the nodes of the system through which the service request ’touches’ on its way to completion.

Hence trace data is more complicated than logging but rely on logging to find traces of all actions being performed by

the system. Traces provides a snapshot into system behavior such as which component took the longest or shortest

period of time, or whether specific underlying functions resulted in errors. Traces provide context to a user request

and can be used to find what is really happening when a user request is entered into the system (by user request, we

mean the high level request that a user makes – e.g. for Google it can be the search for a keyword, or a request for

a routing path to the Map application, or in the case of a bank, it can be a request to find the account balance or

perform a money transfer or pay a bill). In particular, tracing helps to analyze individual user calls and understand

the sequence of (often distributed) steps that are taken to return a result. Tracing also helps to analyze how the calls

behave for di↵erent users, and also when the results are successful or failure.

Journeys provide the sum-total of all activities that is performed during a user session. A journey can have multiple

sub-journeys. Each journey can be made of several paths which can be parallel in a distributed system. A journey
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captures timing, possibly call and return expressions, status code and anything else that an Observer deems to be

necessary. Journey can be abstracted into templates and help find bottlenecks and errors so they can be fixed and

optimized. By analyzing trace data and journeys, one measures not only the overall system health, but also by looking

at similar traces can pinpoint breakdowns or slowdowns, find bottlenecks, identify issues that can lead to performance

degradation and also provide a means to prioritize important code snippets for optimization and improvements. For

example, tracing can help find common bottlenecks (e.g. a database call) that is used by di↵erent traces and hitting

similar slowdown.

To perform better observability all three of these measures – metrics, logs, and traces – are needed. In many cases

data from multiple of these measures will be used in a dashboard to provide a clear picture of what is happening in a

system. The power of observability comes from a unified approach – individually these measures give only a partial

picture – in taking advantage of these three types of measurements to find the health of a given software system.

Observability dashboards gain insight by coalescing data from all three measures and using them to find anomalies

and problems that need to be solved.

Visualization and analytics play a key role in observability. Visual analytics, with human-oriented graphs, are used

by observability dashboards to provide the status of a system in real-time. Visual cues, color coding and other tricks

are normally used to pinpoint abnormalities. Artificial intelligence, machine learning and predictive and post-mortem

analyses are key tools in making observability a success. Continuous analytics, adaptive learning, deep analytics are

increasing being used to find anomalies before they become life-threatening problems to the systems health.

CURRENT STATUS OF OBSERVABILITY IN iRODS

The iRODS system is a complex software that spans multiple hardware as well as software services. The rule-based

system – using micro-services – makes it harder to define common patterns of actions as each installation can have

its own idiosyncratic rule applications.

Even though observability is not currently being performed in any iRODS system, there is a rich support for eventually

providing a good measure of observability capabilities. The iRODS system is a mixed bag when considered from

observability point of view, it has some aspects that are vital to perform observability, but also lacks other crucial

measures and tools to become successful in observability. There are three types of measurements one can identify in

iRODS that can be helpful for observability.

Server Logs

Server logs are collected in each distributed storage server and the iCAT-enabled server in the form of a server log

file. These contain mainly print statements from various functions and procedures in the iRODS system, crucially

from the micro-services. In iRODS there are levels of server log monitoring and the site administrators can throttle

the levels as needed to capture coarse or fine-grained information.

Audit Trails

The audit trails provide a di↵erent type of logging, but mainly tied to the action performed on the data objects

stored in the iRODS system. For example, audit trails captured the information about when someone created a file,

who wrote or modified the file and who accessed the file. Timestamps are also recorded. Audit trails collect user

information on triggered actions. One can use them to recreate traces from a data object viewpoint about what

happened to it during its lifetime.

Status Metadata

This information comes from the iCAT metadata catalog. iCAT stores persistent information in its database which

can be used to analyze di↵erent types of metrics. For example, the size of the file and the time it took to access it

can be used together to find whether the system is operating in an optimal fashion.
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At the current level, iRODS is not doing any observability. One can view the current support in iRODS is more towards

system monitoring activities with no observability functions. Server Logs, Audit Trails and Status Metadata in iRODS

provide a strong and stable foundation for implementing observability. Use of policies, rules and microservices provide

one more level for gaining information to perform observability.

IMPROVING OBSERVABILITY IN iRODS

A concerted e↵ort is needed to upgrade iRODS functionality to perform true observability. At the current stage

iRODS is lacking critical features and functionalities that hinder it from being a viable observability system that

can optimize performance, predict problems, and isolate malforming processes. In its current state, iRODS provides

limited log and trace measurements. Missing functionalities include metrics and journeys, apart from implementation

additions for more useful logs and traces. Missing tools include visualizations, dashboards, and analytics. We

believe that metrics and improved logs, traces and journeys can be implemented in iRODS without any change to its

software stack, thanks to the rule-based micro-services paradigm of its underlying architecture. Additional modules

for visualization and run-time analytics are needed to be developed (or adapted from open source implementations)

to provide administrators insights into its day-to-day operational characteristics.

Logs and Traces

One big advantage to implementing iRODS comes from its current provision for server logs, audit trails and status

metadata. One can use these three measurements that are already implemented in iRODS to perform log-based

operations and tracing operations. But there are some crucial issues that need to be solved before we can do that.

An important bottleneck is the distributed nature of the server logs. Server logs are stored at individual storage

servers and are not synchronized enough to be a useful form of log and trace measurements. Hence, centralizing

these with time synchronizations would be the first step that one needs to do to take advantage of these outputs

from iRODS procedures and function calls. As mentioned earlier, audit trails are data-centric rather than session

centric. Hence their value is doubtful when using them to perform traces or to use log activities to find sub-optimal

operations. They may provide a valuable ’journey-type’ information about how multiple data objects are being used

– but those journeys may not be key to observability. Analyzing them may still be useful and can provide insights

into pre-staging, load balancing and replication.

Status metadata can be used as metrics information. But the type of status that is logged in the iCAT may prove

to be useless from the observability point of view. Even though iCAT captures a rich amount of metrics in these

metadata, most of these are data object related and/or user and resource related. They may not provide insights into

operational data necessary to define metrics measurements. Some possibilities still exists: location of objects, length

of objects, limits on parallel transfer operations and such can be useful in defining some lower and upper bounds of

operational metrics.

New Metrics Measures for iRODS

Operational system level metrics are necessary to be developed for iRODS in order to provide the baseline for

application performance monitoring (APM). APMs provide critical checks about whether the system satisfies SLA

contracts, meets SLO performance standards, identify bugs and potential issues, and provide flawless user experiences

via close monitoring of IT resources and process timelines. APMs are also needed to increase mean time between

problems and reduce mean time between resolution of such problems. Continuous monitoring and comparing against

standard metrics is crucial towards proactive remediation. APM with metrics can be used to provide just in time

alerts and perform simple analysis that can help to identify possible problems in the future.

There are several metrics measurements that can be implemented to help monitor the health of any iRODS imple-

mentation. Many of these metrics can be standardized across implementations, but others need to be defined per

installation. Moreover, these measures themselves can change over time as system gets loaded and/or modified and

upgraded. We provide one such set of metrics that we feel is important as a starting point for iRODS. This list is

by no means an exhaustive list and more will be added as the observability capabilities are improved in the future.
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Many of these can be considered as SLAs or SLOs that provide KPIs. Continuous monitoring will provide the needed

SLIs to take advantage of these metrics.

• CPU/Memory Usage (max, min and average)

• Network Tra�c (max, min, optimal connections and loads)

• Database Load (concurrent usage, speed for critical queries)

• Error Types/Rates (current errors that are not showstoppers)

• Request rates (connections per unit time, max, min, average)

• Response times (mean, max, min)

• Bandwidth/Throughput (volume and number of files)

• Concurrent Connections (external load on the system)

• Number of instances/threads (internal load on the system)

• Microservice/function usage/time (per micro-service metrics)

• Uptime, Restarts & Availability (system SLOs)

• User Experience KPIs: SLAs, SLOs for critical user requests

• Software Module KPIs: SLOs are each major and some minor software modules.

The above metrics are needed to measure against run-time performance of the iRODS system. Some of these measures

are formulaic as they depend upon the data object size or system configuration size (e.g. how many cores). But it is

a good idea to lay down some metrics that can help one to see where one is meeting important KPIs. As mentioned

earlier, KPIs help in setting targets that capture the most important critical metrics for the success of a system

and help focus attention on what matters most. KPIs and SLIs together help to assess progress towards optimal

performance results and user experience. They are critical for tracking e�ciency, e↵ectiveness, timeliness, system

performance and resource utilization.

Journeys for iRODS

Journeys are important to find critical modules, performance of modules as well as to provide insight into how a

user request is addressed. Journeys use traces but build a profile of a session that is more informative than a trace.

In the case of iRODS to define a journey one needs to first address the complexity of the distributed tracing (DT)

that needs to be analyzed in order to define the actions performed by a user request. Chaining of services (including

microservices) and peer-to-peer connections across distributed systems makes it hard to trace the activities of a

session but is critical for performance monitoring. DT helps identify bottlenecks across dynamic and heterogeneous

infrastructures on which an iRODS system is executed.

In order to define journeys, the current server logs need to be enhanced with more operational reporting. One may

reduce the burden in developing this capability by only increasing the reporting of crucial modules with more useful

data that can help when creating the journey profiles. As mentioned earlier, a critical problem is the distributed

nature of the server logs in their current implementation. One may need to consider methods to centralize them in

real-time so that one can take advantage of them to analyze real-time abnormalities but also to develop prototypes

for journeys that can be compared for anomalies.

To take advantage of the concept of journeys in iRODS the following types of analysis need to be implemented:
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• Distributed Transaction Monitoring and Analysis

• Create User or Application Profiles

• Define Patterns and Templates of Journeys and Sub-journeys

• Latency optimization

• Failure Models

• Alternate Pathways

• Service Dependency Analysis

• Critical Path Analysis

• Root Cause Analysis

Providing these analyses will help in building journeys and in timing their performance and finding deviance from

optimal levels.

Observability Analytics for iRODS

At the high level, there are four types of analytics that are relevant for observability that can be utilized to gain

insights from traces, logs, metrics and journeys.

• Predictive analytics can provide insights into what is likely to happen based on historical data. Using data

mining, statistical modeling and machine learning predictive analytics help in defining probabilistic future

outcomes. Analyzing past patterns and trends one can gain insights to induct what might happen going forward

and, in doing so, inform about setting realistic goals, e↵ective planning for failure as well as improvements,

managing performance expectations and avoiding risks. Predictive analytics play a key role in observability as

one can look at various patterns in journeys and traces to figure possible failures down the road. In iRODS

such trends can be used to identify network degradation, resource over utilization, and take actions to overcome

them.

• Diagnostic analytics (also called post-mortem analysis) provide a means to figure what adverse event happened

and help to find out why it happened. Forensic analysis of traces, journeys and logs help in figuring out the

root cause of a failure after it has happened. It can also provide insight into how one can mitigate such failures

in future through corrective actions. Diagnostic analytics use data aggregation and data discovery methods to

find historical patterns. Visual analytics also play a key role in these types of analytics. Summary statistics,

clustering, pattern tracking, and regression analysis are some of the ways one can find patterns and failure mode

backtracking in the data and measure performance.

• Descriptive analytics provides insights and reports on the inner working of the system. They can be used to

aggregate performance metrics as well as report on events. They can be used to find the most used micro-service

and such independent of traces and journeys. An important use of descriptive analytics is to check on the value

of the metrics defined for the system and fine tuning some of them for optimal performance. User profiles,

resource profiles, bandwidth utilizations are some of the key factors that can be aggregated and used towards

improving performance.

• Prescriptive analytics helps you how to avoid certain adverse event from happening. It can tell what, when

and why something can happen. It is in a sense like game playing. One can identify di↵erent scenarios

and simulate actions and see how the system behaves under such circumstances. For example, one can use

prescriptive analytics to find when a particular storage system can break and under what loads can we expect

worse performance beyond what is promised under an SLA. Prescriptive analysis can be used in conjunction

7

49



with the other three types of analytics to provide valuable insights to make evidence-based reasoning about

future events. For example, by tweaking a journey, one can see under what scenarios the journey will adversely

a↵ect the outcome of a request. Predicting fluctuations, perturbations, assessing upgrades are some of the uses

in iRODS for such analyses.

Observability uses multiple types of algorithmic solutions to realize the above three types of analytics. Here are some

examples of such types of analytics that will help perform observability in iRODS.

• Statistical analytics is used to analyze metrics data for informative nuggets. Max, min, median, mean, standard

deviation, etc. can provide valuable insights. Statistics can be used to define norms, SLAs and expected

outcomes and latencies. Hence is a way to define important KPIs.

• Graph Analytics use traces and journeys to find patterns. Pattern analysis. Critical nodes and Most used nodes.

They can be used to perform predictive as well as prescriptive analysis. Graph analysis is also a very useful

way of finding outliers and anomalies in data. In the iRODS context, couple of uses can be seen in pre-staging

and delayed processing.

• Visual analytics is another form of graph analytics and is very useful when performing temporal and spatial data

analysis. They are also used to fusing multiple layers of data together and provide insights that can stand out

in a visual setting. One can find trends, collinearities, correspondences, correlations and clusters, and anomalies

using visual analytics.

• Text Analytics: These can be used e↵ectively when analyzing log files. They will also be e↵ective in creating

journeys and analyzing them. One can use contextual data of journey to define dynamic slicing and figure out

repeatable experiences with possible minor deviations.

• Data Mining, Machine Learning and Deep Learning will help us to learn good and bad patterns. For example,

one can teach a neural network about multiple journeys, both successful and failed journeys. Then when in

real-time a journey is progressing, the neural network model can be used to predict success and failures based

on the pre-path of the journey and take corrective actions to mitigate the risk of failure.

CONCLUSION

This paper provided a glimpse of how one can perform observability in a complex system such as the iRODS.

Observability is becoming increasingly important because of complexities of the applications as well as need for high

availability and throughput by the user community. Observability can be used as a means to monitor the system

continuously and correct them on the fly. Observability can also provide insight to developers and administrators on

how system performance and user experience can be improved. Current status of iRODS provides some rich measures

that can be e↵ectively used to perform observability. Server logs, audit trails and iCAT metadata can be the basis

for assembling an observable system metrics and traces. But there is clear need for improvements. Metrics can be

improved, and server logs can be centralized and improved for utility as a measure for observability. The concept of

journeys is new for iRODS as its current metadata caters mainly to data-centric life cycle. Plugging in concepts for

analytics can make iRODS more e↵ective for future users. iRODS is used as an enterprise system and hence it needs

observability tools to make it a world-class enterprise system.
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ABSTRACT

NIEHS is, like many other research enterprises, entering a new era of opportunity and challenge 

as methods of data-driven discovery emerge. The challenges of managing FAIR (Findable, Ac-

cessible, Interoperable and Reusable) (Hagstrom, 2014) data have multiplied as the variety, ve-

locity and lifecycle requirements of environmental health data increase. FAIR data sharing relies 

on careful curation and management of upstream metadata quality, placement in appropriate data

sharing environments and an expansive view of the ‘data repository’ as a constellation of general

and specific data repositories that still exhibits the qualities of FAIR. The evolution of FAIR 

presents new opportunities and requires new ways of looking at the role of iRODS and policy-

based data management.
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INTRODUCTION

The National Environmental Health Association (NEHA) defines environmental health science as “the science and

practice  of  preventing  human  injury  and  illness  and  promoting  well-being”  [1].  The  National  Institute  of

Environmental Health Sciences has the mission to “discover how the environment affects people in order to promote

healthier lives.”  The importance of data and metadata management in service of this mission cannot be overstated.

The NIEHS experience is not unique. Data management challenges, and the conceptual framework of policy-based

data  management  to  address  these  challenges  have  evolved  over  the  years  from data  preservation  in  a  single

repository,  through  federated  data  sharing  environments,  to  a  new  reality  that  is  a  network  of  heterogeneous

generalist and specific repositories. The new distributed world supports FAIR data discovery and sharing, access

controls, and distributed analysis. 

IRODS AND EVOLVING DATA MANAGEMENT CHALLENGES

iRODS in the digital preservation era

If we trace the evolution of Policy-Based Data Management pioneered by the DICE Center, we see roots in the

archival and data preservation community. iRODS evolved from the original Storage Resource Broker (SRB) and

was redesigned as an open source data management platform with funding by the National Archives of the United

States. In the original conceptual framework, the focus was on the application of management policies over the data

life cycle in the form of a data grid, where a rule engine could enforce management policies in order to establish a

iRODS UGM 2021, June 8-11, 2021, Virtual
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trustworthy preservation environment. The data grid created a logical global namespace over a distributed storage

environment.  This logical  view and the policy management focus made iRODS a compelling platform for data

preservation, creating layers of abstraction and infrastructure independence from the underlying storage technology.

From these capabilities Dr. Reagan Moore was able to form a “Theory of Digital Preservation”. This theory says

that there are [2]:

 A minimal set of preservation processes (microservices),

 A minimal set of preservation metadata that can describe the preservation environment and effect 

of the preservation processes,

 A way of assessing the preservation metadata to validate that a repository is consistent (assess-

ment criteria).

The  theory  posits  that  given  these  capabilities,  an  assertion  can  be  made  that  a  preservation  environment  is

trustworthy. This model is a very concise framework for understanding the purpose of iRODS, even as the context

has evolved. This model is still compelling in the world of FAIR data, where trustworthiness is a core requirement.

iRODS in federated research environments

The next era of iRODS, which we can all the “federation era”,  was ushered in with the launch of the National

Science Foundation’s DataNet initiative. The DataNet Federation Consortium was one of several DataNet initiatives

funded  by  the  National  Science  Foundation.  DFC focused  on  the  iRODS platform as  the  foundation  for  data

federation. The DataNet Federation Consortium (DFC) retained the archival/repository view of the data grid and

added multi-disciplinary sharing of scientific research data via federation mechanisms as a transformative element.

DataNet identified functional areas that should be addressed in cyberinfrastructure for multi-disciplinary data-driven

science. These areas were [3]:

1. data deposition, acquisition and ingestion, 

2. metadata/ontology management, 

3. data security, 

4. data integration and interoperability, 

5. data analysis and visualization.

DFC built on the notion of preservation capabilities and management policies from the data repository era and

extended these concepts in a federation as means to automate many of the necessary tasks to serve the DataNet

functional  areas.  DFC demonstrated  that  capabilities  like  indexing,  publication,  and  data  processing  could  be

included in the scope of policy based data management [4]. 

In the DFC federation, multiple zones under different administrative control could be linked together, data could be

shared between collaborators,  and management  policies  could be enforced  at  each storage location. The policy

managed  framework  in  the  context  of  a  federated  environment  was  extended  further  as  a  means  to  automate

scientific  workflows,  including  the  segmentation  of  workflow  operations  such  that  these  operations  could  be

distributed among different parts of the federation. Moore and Rajasekar did acknowledge that more loosely coupled

workflows would also be required, and interestingly proposed the capability to characterize the operations of a

workflow, including the data management policies that were activated via a vocabulary as an aid to reproducibility.

The authors made a prescient observation that the federation’s policy capabilities, including the possibility to stage a

task at an appropriate storage resource, could work in tandem with loosely coupled workflows, saying “this style of

integration of processing pipelines with collection-based data management is expected to become the basis for data-

driven research”.
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iRODS in disaggregated environments

We observe that iRODS is moving into a third era, and recent experiences at NIEHS reinforces this notion. We view

this through the lens of our own data management challenges in Environmental Health Science. As we moved from

the data preservation era to the federated data collaboration era, we saw that the “Theory of Digital Preservation”

and the policy-based data management approach remained at the heart of the matter and this continues to be the

case. The policy-based data management conceptual frameworks still apply and can help keep iRODS relevant. 

There are several forces that characterize what we will call the “disaggregated environments” era. These are:

 The breaking of tightly coupled federation, replaced with multi-platform standards,

 The emphasis on highly structured data models, 

 The focus on data associated with publications, with attendant focus on reproducibility and provenance,

 Cloud architectures and distributed data pipelines,

 The rise of containers and standard workflow languages,

 The requirement to manage sensitive data and honor data usage agreements.

The breaking of tightly coupled federation

As outlined above, iRODS has its roots in digital preservation and archiving. A data grid was a zone of control that

provided a global logical  namespace  over multiple storage resources.  In  the federation era  the focus shifted to

federated zones representing multiple institutions, where iRODS still was the ultimate technology stack and policy

and automation were largely under iRODS control.  Federation remains a powerful mechanism for data sharing

across collaborating institutions, however the data management challenges now extend far beyond the federation

boundary.

In the NIH Strategic Plan for Data Science  [5], much attention is paid to what is called the “biomedical research

data-resource ecosystem”. The strategic plan notes that there is a proliferation of repositories, including institutional

repositories external to NIH, along with data repositories run by the various branches of NIH. In addition, there are

multiple specialized repositories where subsets of research data are deposited. For example, a study may produce

gene expression data, which is to be deposited into GEO, the Gene Expression Omnibus [6], while also producing

sequencing  data  to  be submitted  into the Sequence  Read Archive  [7].  Meanwhile,  data  sets  associated  with a

publication may end up deposited in a general repository, resulting in a patchwork of repositories associated with a

study, publication, or research question. A great illustration of the problem is the existence of a guide to the diverse

ecosystem of generalist and specific repositories relevant to biomedical research at NIH produced by the National

Library  of  Medicine  [8],  currently  populated  with 66 entries  for  domain-specific  repositories  and  a half-dozen

generalist  repositories.  It  is  evident  that  federation  models  explored  in  the  DFC era  will  not  apply  in  such  a

fragmented ecosystem. 

In  response  to  this,  iRODS  should  refine  the  policy-based  data  management  philosophy,  elevating  policy

management in two areas. First, the expansion of support for policy management of metadata is required, making

metadata  management  a  first-class  concern.  In  this  new  era,  especially  as  there  is  a  greater  focus  on  data

harmonization and the employment of standard vocabularies and common data elements, policy-based management

approaches can strengthen iRODS ability to serve as the canonical data and metadata preservation and management

environment. Management policies can help maintain and validate metadata standards and automate many of the

ingest  and  transformation  tasks  that  underlie  distribution of  data  to  a network  of  loosely-coupled  repositories.

Second, the focus on policies as a means to automate tasks like indexing and publishing make iRODS an attractive

solution  for  creating  data  coordination  and  data  submission  nodes  that  manage  distribution  while  maintaining

metadata that can link distributed data together.
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The policy approach is well suited to the requirements of a canonical repository of data and associated metadata

with a focus on metadata acquisition and quality control. In the NIEHS case this emphasizes the use of standard

controlled vocabularies for curation and validation. Upstream data collection from sample and project submission

along with the ingestion of data from laboratory information management (LIMS) systems and analysis workflows

provides  much-needed  data  curation.  Policy-based  metadata  management  enables  researchers  to  generate  valid

submissions to various general and specific repositories, and NIEHS is currently providing tools for publishing to

GEO (Gene Expression Omnibus).  If  iRODS can play a role in mediating data submissions,  it  can then retain

accession information and pointers to various repositories where data is deposited, enabling FAIR data discovery

across disaggregated storage locations. The COPO project [9] describes a data submission brokering service with a

similar design goal. COPO provides general metadata curation tools, applying community developed vocabularies

and  ontologies  for  curation  and  validation  and  then  uses  these  metadata  to  broker  data  submissions  to  target

repositories. Instrumenting these publishing and distribution tasks allows foldback of additional metadata curation as

well as allows establishment of links between source datasets and publications and analysis data sets in external

repositories. This can aid in later cross-repository searching.

The emphasis on highly structured data models

The NIH has placed an emphasis on Common Data Elements (CDEs) as an important enabler for FAIR data sharing

in a highly distributed data ecosystem. Rubenstein and McInnes [10] observed that:

One of the main obstacles to advancing biomedical research is the inability to

exchange and share data and knowledge. This is the result of: data collected

using different terminologies, databases being established with lack of interop-

erability and with no linkage between them, negative results and lessons

learned not being shared, and resources (including funding and patient popu-

lation) being used in duplicated efforts with no coordination and collabora-

tion.

To this end, NIEHS has convened an Environmental Language Health Collaborative to bring together interested

parties  to  “advance  community  development  and  application  of  a  harmonized  language  for  describing

Environmental  Health  Science  (EHS)  research”  [11].  The  development  of  CDEs  and  community  developed

ontologies and controlled vocabularies improves interoperability.

While the curation and validation of metadata using vocabularies and ontologies is critical, the data model of the

repository itself and the relations between objects is equally important. For example,  the Gen3 Data Commons

explicitly build a commons architecture on highly structured data model, represented as a graph, and with services

for indexing, submitting data, and searching the graph representation for data objects of interest [12, p. 3]. One of

the base assumptions in Gen3 is that there are multiple commons connected by a core set of API and services. This

is described as a “narrow middle” architecture  [13]. These services include indexing and search capabilities and

these capabilities are explicitly built around a structured data model. In the view of Grossman, this deep metadata

model is  one of  the differentiating factors  between a “data commons” and a “data lake”,  where a data lake is

characterized as “when data are stored simply with digital IDs and metadata (shallow indexing), but without a data

model” [14]. This data lake versus data commons distinction is important to weigh as metadata capabilities, such as

metadata templates are being considered by the iRODS Consortium [15]. While the initial discussions are on flat

schema for metadata,  it  is a matter to consider whether  iRODS would need to support graph-like structures,  or

whether the platform would rather delegate this level of sophistication to an external service.
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The focus on data associated with publications, with attendant focus on reproducibility and provenance.

Research data at NIEHS is utilized in many ways, and diverse research outputs are produced and published, ranging

from data  sets  to  reports  to  papers  submitted  to  peer-reviewed  journals.  In  all  disciplines,  there  is  a  definite

movement towards making research data a first-class concern on par with a published paper. When a conclusion or

figure is presented in a scientific publication, the ability to cite the original data and to show how a conclusion or

figure  can  be  reproduced  is  now  a  requirement.  Force11  has  published  a  Joint  Declaration  of  Data  Citation

Principals that captures this new reality [16], observing that “data must be accorded due importance in the practice

of scholarship and in the enduring scholarly record. In other words, data should be considered legitimate, citable

products of research. Data citation, like the citation of other evidence and sources, is good research practice and is

part of the scholarly ecosystem supporting data reuse.” Viewed through the policy lens, these Force11 data citation

principles fit well in the data lifecycle framework described by Moore and Rajasekar, where they observed that each

stage of  the research data lifecycle  was governed  by an explicit  set  of  policies that  represented a “community

consensus on data sharing” [17]. The notion that iRODS can provide automation and policy control for management

of  research  data  sets  at  the  publication  side  of  the  data  lifecycle  can  in  turn  expand the  sphere  of  control  of

management policies into the distribution and publication functions, expanding the scope of metadata and allowing

better determination of the authenticity and reproducibility of research results, all the way back to the original data

sets.

There are several challenges in the reproducibility aspects of FAIR that NIEHS is experiencing. Our data generation

strategy is currently very fragmented. With the gradual formalization of data management at the Lab Information

Management  System (LIMS) level there are opportunities to extract  metadata related to the various assays and

procedures that were carried out. The Office of Data Science at NIEHS is championing efforts to formalize the

vocabularies used to describe samples and assays and data handling in order to improve the upstream metadata

quality. Data analysis (mapping to and updating the “Data Processing Pipeline” stage in the data lifecycle) is an area

of difficulty,  as the workflows and procedures used to analyze data are often detached from the control of any

machine-actionable policies. There are three strategies we are focused on:

 Championing the use of notebooks as a way of capturing analysis,

 Championing the use of standard workflow languages and containerization to capture pipelines in detail,

 Considering aids and tooling for data submission for publication and to repositories as a way to capture 

links between publications and the source data.

Each of these strategies do not automatically establish the “R” in fair, however, they do present opportunities to

improve the daily experience of analysts and researchers, improve the ability to share and record analysis steps for

day-to-day work, and finally to instrument the analysis process for improved metadata and provenance capture. For

example,  Samuel et  al.  found that  employing Jupyter  notebooks enhanced  the provenance capture for  machine

learning based analysis  [18]. As we will note in our discussion of the rise of containers and standard workflow

languages,  the enhancements to portability, the ability to share or utilize best-practices pipelines, as well as the

provenance and reproducibility benefits  are significant.  We saw in the COPO model how the publishing phase

presents  opportunities  for  management  policies  to  gather  provenance  information.  Expanding  the  ability  of

management policies to “see” activities and to gather metadata about processes and provenance can lead to better

reproducibility of research results.
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Figure 1. The research data lifecycle and relevant policies, from [17]

Cloud architectures and distributed data pipelines

One of  the biggest  disrupters  to  data  management  has  been  the rise  of  the cloud.  While  there  are  compelling

capabilities in iRODS to connect to and manage cloud storage, there are also new challenges and opportunities in

extending  iRODS as  a  part  of  the  broader  architecture  beyond storage.  The notion of  federation  is  present  in

discussions about cloud-based analysis but federation in these disaggregated environments is quite different, more

along the lines of the “narrow middle” architecture with a sparse set of services that link otherwise independent

environments. NIH, in their strategic planning, has identified several focus areas, including establishing researcher

identity, managing data usage agreements, running computational tasks across multiple endpoints while enforcing

fine grained authentication/authorization across multiple cloud providers as areas  of concern.  Each of these are

natural areas where policy-based data management concepts can play a significant role. 

It is the ability to rapidly scale to run complex analysis, taking advantage of the compute power and available tools,

that  is  driving  the  migration  of  biomedical  science  to  the  cloud.  The  National  Institutes  of  Health  (NIH)

acknowledged this  migration in its  original  data commons pilot.  The original  pilot  identified many challenges,

including the portability of analysis to multiple cloud architectures, and the importance of minimizing ingress and

egress charges, running an analysis task as close to the data as possible [19]. The Global Alliance for Genomics and

Health (GA4GH) has worked to standardize workflows and pipelines, and to achieve the goals of portability and

efficiency through the use of standard workflow languages, along with cloud-neutral data access and task execution

standards  [20].  Using standards  such  as  the  Data  Repository Service  (DRS)  and Workflow Execution  Service

(WES), researchers have been able to demonstrate qualities of a federated data ecosystem [21]. 
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The iRODS Consortium has considered “data-to-compute” and “compute-to-data” as general platform capabilities.

Platforms such as CyVerse Discovery Environment have made great strides in providing “bring-your-own-compute”

to their researcher community  [22]. Strategies for iRODS to enable of these narrow-middle services and support

emerging standards and conventions to support distributed analysis are a rich area for exploration. There has been

prior work using iRODS to support distributed analysis on cloud platforms under the umbrella of the original NIH

Data Commons Pilot as well as under the sciDAS program [23] which demonstrated the ability to distribute tasks

based on a calculation of performance and cost factors. This work parallels many of qualities of the current GA4GH

federated analysis projects, including the Task Execution Service (TES) [24]. These examples show that there may

be multiple ways that iRODS could serve as a platform for distributed data pipelines.

The rise of containers and standard workflow languages

In large part, the ability to run pipelines and analysis in distributed environments relies on the use of containers such

as Docker or Singularity. The CyVerse Discovery Environment is a great example within the iRODS Community,

where researchers can create and containerize tools, annotate them, and add them into the research environment to

run and share. Repositories such as BioContainers [25] and Dockstore [26] allow researchers to share containerized

tools and workflows written in standard workflow languages such as CWL [27] and NextFlow [28]. The portability

and reproducibility  of  containers  is  well  understood.  Formalizations for  running containerized  tasks  on data at

remote storage locations (as CyVerse does to some extent) using standard TES-compliant interfaces may be an

interesting and beneficial capability.

The requirement to manage sensitive data and honor data usage agreements

If iRODS and policy-based data management have any intersection with capabilities that are desired in the proposed

NIH Data Commons architecture, they would intersect with the need for fine-grained and dynamic decisions on data

access. Efforts are underway to develop ontologies that can describe data usage , as well as standard systems, built

on existing standards such as OpenID Connect and OAuth, for identifying researchers. There are efforts at NIH and

at GA4GH to create something akin to a data passport. This system was described by Cabili et al [29] as a “Library

Card”:

A Library Card would encode identity and other attributes of a researcher as a

set of standardized claims. For example, institutional affiliation may be

recorded in a claim, along with a level of assurance regarding the claim: (a)

self-assertion (b) institutional email (c) proof of support of the claim by an au-

thorized third party within the institution. These claims, and others like them,

are recorded by the Library Card issuer and provided over secure protocols to

relying parties who will in turn make access decisions based upon these claims

iRODS policies and the ability to make decisions based on role, status, or dynamic factors such as acknowledgment

of terms or data usage agreements would be a natural area to investigate, especially were iRODS is mediating access

to research data sets. NIEHS did demonstrate a Data Repository Service (DRS) implementation that can run on

native  iRODS  [30,  p.].  This  DRS implementation  does have,  in  later  planned iterations,  the ability  to  provide

GA4GH Data Passports  [31] that can provide a framework for exploring how iRODS policies can interact with

GA4GH Data Passports.
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CONCLUSIONS

This paper observes that a third “era” of policy-based data management has arrived, driven by the disaggregated

nature of repositories, the rise of the cloud, and the need to create federations across disparate systems for data-

driven  science.  The capabilities  demonstrated  and  developed in prior  eras  of  iRODS of  have not  disappeared.

However,  the  challenge  and  opportunity  presents  itself  to  build  upon  the  success  of  the  policy-based  data

management model and the core capabilities in the iRODS platform and learn how they apply and can advance the

platform in this new federation era.
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ABSTRACT 

As developers increasingly adopt the cloud-native paradigm for application development, Kubernetes has become 

the dominant platform for orchestrating their cloud-native services. To facilitate iRODS access in Kubernetes, we 

developed an iRODS CSI (Container Storage Interface) driver. The driver provides on-demand data access to the 

iRODS server using multiple connectivity modes and exposes a file system interface to Kubernetes Pods, thereby 

allowing cloud-native services to access iRODS without staging data within the containers. In this paper, we 

introduce the design and functionality of the iRODS CSI driver. We also introduce two sub-projects: Go-

iRODSClient and iRODS FUSE Lite. Go-iRODSClient is an iRODS client library written in Go. iRODS FUSE Lite 

is a complementary FUSE-based iRODS storage backend to the iRODS CSI driver that is implemented using Go-

iRODSClient to provide improved performance and enhanced capabilities compared to iRODS FUSE. We expect 

Go-iRODSClient, iRODS FUSE Lite, and the iRODS CSI driver to be indispensable tools for integrating iRODS 

into cloud-native applications. 

Keywords 

iRODS, client, Kubernetes, Container Storage Interface, FUSE, data management 

INTRODUCTION 

The cloud-native paradigm [1] is becoming increasingly popular for application development as the demand for 

building and running scalable applications in dynamic environments such as cloud increases. The paradigm has led 

to Kubernetes [2] becoming the dominant platform for orchestration of cloud-native services. CSI (Container 

Storage Interface) [3] is a standard interface for exposing storage systems in Kubernetes. The CSI mounts data 

stored in remote storage on the Linux directory hierarchy within Kubernetes Pods. We developed an iRODS CSI 

(Container Storage Interface) driver to facilitate iRODS access in Kubernetes. The driver manages iRODS file 

system mounts and provides a file system interface to Kubernetes Pods, thereby allowing cloud-native services to 

access iRODS via the file system interface without staging data in the containers. The iRODS CSI driver supports 

three iRODS file system clients: iRODS FUSE Lite, davfs2 [4], and the NFS client. Kubernetes users who create 

volumes (Kubernetes Persistent Volumes) choose the client that best meets their needs for use with the iRODS CSI 

driver. We compare the pros and cons of the clients in this paper. 

We also present iRODS FUSE Lite, a new iRODS file system client. iRODS FUSE Lite is a reimplementation of the 

existing iRODS FUSE client [5], that was written in C++ using the iRODS C API library. iRODS FUSE has several 

unfixed bugs (e.g., files not replicated) and the code has not been maintained for a long time. Implementing new 

features and fixing the bugs requires significant effort as the client is written in C/C++. In addition, iRODS FUSE 

had portability challenges as it relies on the iRODS C API library. The library does not officially support some 

newer releases of Linux distros (e.g., Ubuntu 20.04). We re-implemented iRODS FUSE Lite in Go to address these 

issues and to improve portability. 
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We also present Go-iRODSClient, a library written in Go that implements the iRODS protocol. The library is used 

in iRODS FUSE Lite and the iRODS CSI driver for iRODS access. There is an existing Go library (GoRODS [6]), 

but we did not use it because it has a dependency on the iRODS C API library, which causes a portability issue. We 

implemented it in pure Go to improve portability. 

This paper introduces the design and functionality of the iRODS CSI driver, iRODS FUSE Lite, and Go-

iRODSClient. This paper also provides performance benchmark results. In short, Go-iRODSClient’s data transfer 

bandwidth is similar to Python-iRODSClient [7], which is an iRODS API library for Python. iRODS FUSE Lite 

shows significant improvement in data transfer bandwidth compared to the existing iRODS FUSE client -- a 25% 

improvement for data upload and a 157% improvement for data download bandwidth. iRODS FUSE Lite has the 

highest data upload bandwidth but the lowest data download bandwidth among iRODS file system clients. We plan 

to improve the data download bandwidth of iRODS FUSE Lite to make it more useful. 

GO-IRODSCLIENT 

Go-iRODSClient is an iRODS Client library written in pure Go and provides APIs for iRODS access. Python-

iRODSClient [7] served as a reference implementation for the Go-iRODSClient. Leveraging Go’s portability, the 

library can be used in any operating system that Go supports without dependency and compatibility issues. 

Initially, we attempted reusing Python-iRODSClient as the basis for the iRODS CSI driver. However, this approach 

caused a portability issue, causing unnecessary driver container image bloating for installation of Python packages. 

After replacing the functionality with Go-iRODSClient, the size of the driver container image was reduced by 

approximately 64%, from 259MB to 93MB. The reduced image size enables fast image download and requires less 

disk storage space. 

The current version of Go-iRODSClient (v0.4.5) provides the following functionality: 

x Authentication: The client authenticates iRODS users via password or PAM. 

x Communication: The client can communicate to the iRODS server via TCP/IP or SSL. The client also 

manages a connection pool for concurrent accesses. 

x Collection Management: The client can create, move, delete, and search Collections. 

x Data Object Management: The client can create, move, delete, replicate, search, read, and write Data 

Objects.  

x Metadata Management: The client can add, list, and delete iRODS Metadata for Resources, Data Objects, 

and Collections. 

x User Management: The client can add, list, and delete iRODS users or groups. 

x Caching: The client can cache frequently accessed information to improve access performance, such as a 

list of entries in a Collection, Data Object/Collection status information, access control lists (ACLs), and 

user/group information. 

Go-iRODSClient is currently under active development as we continue to implement additional APIs. Go-

iRODSClient is currently used in several CyVerse projects, such as iRODS FUSE Lite, the iRODS CSI driver, and 

CyVerse DataWatch [8]. CyVerse plans to use the library more widely to develop new services and tools. 

IRODS FUSE LITE 

iRODS FUSE Lite is an iRODS file system client that enables Linux users to mount iRODS data on the Linux 

directory hierarchy. Users can access iRODS data via file system accesses on the mount point. It is a 

reimplementation of the existing iRODS FUSE client that was written in C++ using the iRODS C API library. 

iRODS FUSE Lite was implemented in Go to address the stability and portability issues. 
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Figure 1. iRODS FUSE Lite implements the FUSE interface to enable iRODS access via the file system 
interface. 

 

iRODS FUSE Lite implements the FUSE interface [9] to enable iRODS access via the file system interface  

(Figure 1). It uses the “bazil.org/fuse” library [10] that provides the FUSE interface in Go. iRODS FUSE Lite can 

run on any FUSE-compatible systems such as Linux and MacOS. 

iRODS FUSE Lite relies on Go-iRODSClient for iRODS access. iRODS FUSE Lite uses Go-iRODSClient for 

authentication, data access, parallel connection management, and metadata caching. iRODS FUSE Lite also 

implements data access optimizations, such as asynchronous data writing. 

The current version of iRODS FUSE Lite (v0.2.3) supports the following features: 

x Data Access: The client provides listing, creation, update, and deletion of iRODS Data Objects and 

Collections. 

x Authentication: The client authenticates iRODS users via password. In addition, the client supports proxy 

authentication that allows an admin to login on behalf of another user. 

x Permission Mapping: The client maps iRODS Permissions to Linux permissions. 

x Data Caching: The client caches recently accessed content of iRODS Data Objects. The data caching is 

done by Linux page caching. 

x Asynchronous Data Writing: The client buffers written data into local disks and transfers to iRODS in the 

background asynchronously to improve data write performance. The client flushes buffered data before 

closing the file handle to ensure close-to-open data consistency. 

x Path Mapping: The client can map iRODS Data Objects or Collections to files or directories on the Linux 

directory hierarchy. The mappings are customizable. 

Unlike traditional Unix permissions, iRODS has a multi-owner model with a linear permission system, which means 

permissions for a Data Object or a Collection can be set to OWN, READ, WRITE, or NONE per iRODS user. An 

iRODS user with OWN permission can read, write and delete files and change permissions for others. WRITE 

permission enables file read and write. READ permission enables reading the content in a file. 

The current implementation of iRODS FUSE Lite maps iRODS permissions to the traditional Unix permissions in a 

simple way. If the current user logged-in has OWN permission for an iRODS Data Object (or Collection), iRODS 

FUSE Lite assigns read, write, and execute permissions (rwx------). If the current user logged-in has WRITE 

permission, read and write permissions (rw-------) are assigned. For READ permission, only read permission  

(r--------) is assigned. iRODS FUSE Lite uses the simple permission mapping because iRODS users may not exist in 

the local system so it cannot map the iRODS users to local Linux users. The same approach is also used in 

NFSRODS [11]. 

iRODS FUSE Lite has two new features that are absent in the existing iRODS FUSE client: proxy authentication 

and custom path mapping. Proxy authentication allows an iRODS admin to login and access iRODS data on behalf 
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of another iRODS user. The iRODS accesses are emulated for the proxied user according to the user’s access rights. 

Doing so, the cloud service can provide a web interface for accessing a user's iRODS data or broker iRODS access 

to other apps without having direct access to the user’s password. 

Custom path mapping enables users of iRODS FUSE Lite to customize path mapping between the source iRODS 

data and the destination mount location. By default, iRODS FUSE Lite mounts an iRODS Collection on the Linux 

directory hierarchy. Data Objects and Collections contained in the Collection are also mapped to files and directories 

under the mount point, respectively. However, the mapping is also customizable for various purposes, such as to 

mount multiple Data Objects and Collections spread over different paths, or to exclude Data Objects containing 

sensitive data from mounting. We present a detailed use case of the custom path mapping in the Integration Example 

section.   

iRODS FUSE Lite is also under active development. We plan to add more data access optimizations, such as 

prefetching and caching. We also continue to improve client stability. 

IRODS CSI DRIVER 

Data written by apps running in Kubernetes are volatile. Data written in a Kubernetes Pod is lost after the 

termination of the Pod. To store data persistently, Kubernetes provides Persistent Volumes [12]. Persistent Volumes 

provide an abstraction of storage and Container Storage Interface (CSI) mediates Persistent Volumes and storage. 

Drivers of the CSI implement storage specifics. We developed an iRODS CSI driver to enable iRODS to function as 

persistent storage in Kubernetes. 

CSI relies on Linux file system mount for data access. By doing so, it does not require modifications to apps using a 

local file system for input and output to access Persistent Volumes. The iRODS CSI driver uses iRODS file system 

clients (such as iRODS FUSE Lite) to mount iRODS data. The iRODS CSI driver supports three iRODS file system 

clients to mount iRODS data: iRODS FUSE Lite, davfs2, and the NFS client. One of the clients is selected when 

creating a Persistent Volume.  

First, iRODS FUSE Lite implements the iRODS protocol and communicates with iRODS servers directly. This is 

advantageous because iRODS FUSE Lite can be used for any iRODS setup. Unlike iRODS FUSE Lite, davfs2 and 

the NFS client require additional services, such as DavRODS [13] and NFSRODS [11]), for protocol conversion. In 

addition, iRODS FUSE Lite provides iRODS-specific features, such as proxy authentication. 

Second, davfs2 implements the WebDAV protocol [14], which is a data access protocol over HTTP. Because it is 

HTTP-based, web-cache services (e.g., Varnish Cache [15]) can be used to improve read performance for frequently 

requested data. However, because iRODS does not provide native support for the WebDAV protocol, an additional 

service (DavRODS [13]) is required for protocol conversion between the WebDAV and iRODS protocols. 

Lastly, the NFS client is a well-known file system client used by many network storage systems. It communicates 

with storage servers via the NFS protocol [16]. The NFS client is available in most computing environments because 

of its popularity. However, because the NFS protocol is not natively supported by iRODS, an additional service 

(NFSRODS [11]) is required for protocol conversion. In addition, the NFS client is not suitable for providing 

iRODS access in untrusted networks as it only supports host authentication (AUTH_SYS). 

The iRODS CSI driver (v0.3.1) has two component modules: controller and node (Figure 2). The controller module 

runs on several Kubernetes cluster nodes in a replication mode for fault-tolerance and processes dynamic volume 

provisioning requests. The node module runs on every Kubernetes cluster node and is responsible for processing 

static volume provisioning requests. 

The static volume provisioning mode is useful for accessing existing data stored in iRODS. In the static volume 

provisioning mode, Kubernetes users create Persistent Volumes and Persistent Volume Claims. A Persistent Volume 

specifies the iRODS data to mount, login credentials, and mount options for iRODS clients. The node module in the 

iRODS CSI driver receives the creation request of the Persistent Volume and mounts iRODS data on the Linux 

directory hierarchy. Then, Persistent Volume Claims are used to request access to the Persistent Volume. 
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Figure 2. iRODS CSI driver provides Kubernetes users with iRODS data access by processing volume 

provisioning requests. 

 

The dynamic volume provisioning mode is useful for users who do not require access to existing iRODS data but 

require storage for archives. In the dynamic volume provisioning mode Persistent Volumes are automatically created 

by the controller module upon the creation of Persistent Volume Claims. The controller module creates Persistent 

Volumes dynamically using pre-configured iRODS access information (e.g., iRODS data to be mounted and login 

credentials). Instead of mounting an existing iRODS data, the iRODS CSI driver creates a new empty iRODS 

Collection per Persistent Volume. The created Persistent Volumes are then passed to the node module. When a 

Persistent Volume Claim is reclaimed, the Persistent Volume associated with it is deleted by the controller module. 

We are integrating the iRODS CSI driver to CyVerse Discovery Environment (DE), a scientific research cloud 

platform. A detailed description of the integration is given in the next section. 

INTEGRATION EXAMPLE 

CyVerse Discovery Environment (DE) [17]–[19] is a cloud computing service that allows scientists to perform 

research apps. The service uses Kubernetes for computing resource orchestration and iRODS for data storage. 

CyVerse Data Store [20] is the iRODS-based storage service that stores large community datasets and user data. 

The current implementation uses a data staging approach for exposing iRODS user data into containerized apps. To 

run CyVerse DE apps, scientists select input data (iRODS Data Objects or Collections) and an output directory 

(iRODS Collection) in CyVerse Data Store. Before executing the app, CyVerse DE downloads the input data to a 

local disk in the Pod in which the app will run. The app reads the local copies, performs analysis, then produces 

output on the local disk. CyVerse DE then uploads the output to CyVerse Data Store after the app terminates. 

The staging approach has a few drawbacks. First, it produces local copies of input data. This makes it challenging to 

process large input data that exceeds the local disk capacity. As the service runs multiple apps simultaneously, the 

local disk capacity is also shared among the apps currently running. Each running app gets only a small portion of 

the local disk capacity. Second, apps must wait for completion of staging input and output data. This prevents 

computation and data transfer from overlapping; it may cause longer execution times of the apps [21]. Lastly, 

staging requires unused parts of input files to be transferred and stored. Apps may require only some parts of input 

data for analysis, (i.e., reading some records in a database file). In this case, downloading the unused parts of input 

files wastes network bandwidth, disk space, and time. The iRODS CSI driver addresses these drawbacks by 

transferring data on-demand when it is accessed, instead of staging it. 
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For the integration, we first configured the iRODS CSI driver to use proxy authentication. Using proxy 

authentication, CyVerse DE does not have direct access to iRODS users’ passwords for user operations on data in 

CyVerse Data Store. We configured the iRODS access information (e.g., iRODS host address and admin credentials) 

for proxy authentication using Kubernetes Secrets [22]. A Secret is a storage for small sensitive data, such as 

passwords or tokens. Data stored in the Secret are encrypted, making it a good medium for passing sensitive 

configuration information to the iRODS CSI driver securely. We also configured the iRODS CSI driver to use 

iRODS FUSE Lite for iRODS access. 

We configured the iRODS CSI driver using the static volume provisioning mode. To run an app in CyVerse DE, a 

scientist selects existing input data and an output directory. CyVerse DE then creates a new Persistent Volume and 

Persistent Volume Claim with the data paths and iRODS username. The iRODS CSI driver processes the volume 

creation request and mounts the iRODS data in the Pod before running the app. 

CyVerse DE mounts input and output data using a single Persistent Volume. In many cases the input and output data 

for an app are in different paths. With default path mapping in iRODS FUSE Lite, this requires multiple file system 

mounts; so multiple Persistent Volume and Persistent Volume Claims are created. Creating hundreds of processes of 

iRODS FUSE Lite for the mounts on a Kubernetes node will degrade data access performance as they can create 

thousands of iRODS connections, overloading the system. The custom path mapping enables CyVerse DE to mount 

the input and output data for an app using a single process of iRODS FUSE Lite. 

Figure 3 describes how the path mapping works. CyVerse DE generates path mappings with two subdirectories, 

“input” and “output”. All the input data are mapped under the “input” subdirectory and output data are mapped to 

the “output” subdirectory. CyVerse DE passes the mappings to the iRODS CSI driver via a Persistent Volume 

creation request and iRODS FUSE Lite uses the mappings to construct a directory hierarchy. 

 

 

Figure 3. iRODS FUSE Lite and the iRODS CSI driver allow users to manipulate path mappings between 
iRODS data and local files. The mappings are defined using YAML and passed to iRODS FUSE Lite via the 

standard input (stdin). 
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PERFORMANCE EVALUATION 

We evaluated data access performance of Go-iRODSClient and iRODS FUSE Lite by comparing them with existing 

iRODS libraries and file system clients. The performance of the iRODS CSI driver is not evaluated independently 

because it relies on the iRODS file system clients used in iRODS FUSE Lite evaluation. 

The evaluation is performed in a test cluster that runs OpenStack. We used an instance with 2 VCPUs and 8GB 

RAM for running the iRODS clients and benchmarks. We chose the small instance type similar to end-users’ 

computing environments (e.g., Laptop). We also set up a separate iRODS server on another instance with 4 VCPUs 

and 8GB RAM. We chose instance types with more VCPUs for the iRODS server for concurrent processing. To 

evaluate the NFS client and davfs2 we also set up two instances, each with 2 VCPUs and 8GB RAM for NFSRODS 

and DavRODS, respectively. These servers are only responsible for protocol conversion; large computing resources 

are not required for our benchmarks.  

To evaluate the performance of Go-iRODSClient, we compared it with existing iRODS API libraries, Python-

iRODSClient [7] and Jargon [23] that are well-maintained and widely used in the iRODS community. We wrote 

simple data transfer code using the libraries to measure the elapsed times for transferring 1GB. 

To evaluate the performance of iRODS FUSE Lite, we compared it with existing file system clients that provide 

iRODS access, davfs2 and the NFS client. We used the Linux “cp” command to transfer 1GB data and measured the 

elapsed time. 

 

 
Figure 4. Data transfer performance of iRODS client libraries (A) and file system clients (B). We implemented 

simple data transfer benchmarks using the libraries for the evaluation. We used “cp” to test data transfer 
performance of the file system clients.  

 

Go-iRODSClient 

Figure 4 (A) shows the data transfer performance of the iRODS API libraries. Go-iRODSClient showed similar 

performance as Python-iRODSClient. The performance difference was within 4%. This is because Go-iRODSClient 

was developed with reference to the source code of Python-iRODSClient. 

Jargon showed the highest data transfer bandwidth. Jargon showed 19% better performance for download and 8% 

better performance for upload compared to Go-iRODSClient. We think this is because Jargon continuously transfers 

the data as the buffered data is consumed. In comparison, data transfer in Go-iRODSClient and Python-
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iRODSClient is not pipelined because they transfer data when it is requested on-demand. We plan to implement the 

transfer optimization in Go-iRODSClient. 

We did not use the parallel data transfer APIs supported by Jargon. While the parallel data transfer APIs improve 

data transfer performance dramatically, it requires disks for storing data received. Thus, the APIs are only useful 

when uploading and downloading data from and to disks. Also, Go-iRODSClient and Python-iRODSClient do not 

implement the APIs yet. So, we excluded these APIs in the evaluation. As Python-iRODSClient is going to release 

new parallel data transfer APIs, we plan to implement the APIs in Go-iRODSClient in the future. 

iRODS FUSE Lite 

Figure 4 (B) shows the data transfer performance of the iRODS file system clients. iRODS FUSE Lite outperformed 

the existing iRODS FUSE client (iRODS FUSE Old) for both upload and download bandwidths. iRODS FUSE Lite 

showed 25% improved data bandwidth for download and 157% improved performance for upload. The existing 

iRODS FUSE client (iRODS FUSE Old) and iRODS FUSE Lite implement data reads (download) using the same 

block-based transfer (block size is 64KB). However, we think the new implementation of cache management and 

connection management is more efficient, improving the bandwidth. iRODS FUSE Lite implements data writes 

(upload) differently from the existing iRODS FUSE client (iRODS FUSE Old). The existing iRODS FUSE client 

buffers written data in RAM and transfers them to iRODS asynchronously. As this relies on RAM, however, it 

cannot buffer large data; only few kilobytes of data are buffered in RAM. This can break transfer pipelining. iRODS 

FUSE Lite implements disk buffers to buffer even larger data, possibly hundreds of MB. Then transfers buffered 

data asynchronously. This improved data write (upload) performance significantly than using the existing RAM 

buffers. 

The NFS client showed the highest data read (download) bandwidth. The NFS client showed 185% better 

performance than iRODS FUSE Lite. The NFS client communicates with iRODS via NFSRODS that is 

implemented using Jargon for data access. Therefore, it showed similar data read performance as Jargon shown in 

Figure 4 (A). 

Davfs2 showed 60% higher data read (download) bandwidth compared to iRODS FUSE Lite. We think davfs2 

implements more efficient data buffering than iRODS FUSE Lite. We will continue to optimize the data transfer and 

buffering code. 

Unlike the download performance, the NFS client and davfs2 did not show good performance for data writes 

(upload). The NFS client and davfs2 showed 17% and 44% worse performance for data writes than iRODS FUSE 

Lite. Both the NFS client and davfs2 require additional services, NFSRODS and DavRODS, for protocol conversion, 

causing overheads. Further investigation is required to measure these overheads. 

To sum up, Go-iRODSClient and iRODS FUSE Lite showed acceptable data access performance compared to 

existing iRODS libraries and file system clients. We plan to continuously introduce new features and improve the 

data transfer performance. 

CONCLUSION 

We have described the design and implementation of three projects. Go-iRODSClient provides iRODS access in the 

Go programming language. iRODS FUSE Lite allows users to access iRODS via the file system interface. The 

iRODS CSI driver is implemented using the two projects to provide iRODS access in Kubernetes. The iRODS CSI 

driver enables Kubernetes users to create Persistent Volumes for iRODS and provide iRODS access in Kubernetes 

Pods. The projects provide data access performance comparable to existing iRODS libraries and file system clients. 

However, the value of our work lies in that they enable more convenient iRODS access in the Kubernetes 

environment. We are currently integrating our work into several CyVerse projects and evaluating its usefulness. 

Future developments will focus on performance optimizations in Go-iRODSClient and iRODS FUSE Lite. We plan 

to implement parallel data transfer APIs to improve data access performance. We also plan to perform real world 
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large-scale benchmarks in a production environment to measure the performance improvements of our work. We 

expect our work to facilitate Kubernetes adoption in iRODS communities. 
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ABSTRACT

Ceph is the leading open source software defined storage solution. As an extremely portable and flexible solution it's

an ideal approach to deploying and provisioning a one-size fits all storage solution within your data center.

In this talk I will provide a brief overview of Ceph, how it compares to other SDS solutions, new features and

developments in recent releases, and different approaches for deployment.

I will also cover how it integrates with iRODS.
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ABSTRACT

SURF, the cooperative association of Dutch educational and research institutions, offers a wide range of services for

different phases in the life cycle of research data, including the long term preservation resource, based on a tape

library. That storage resource is offered as a standalone service, but also through iRODS and it is optimized for files

with a size of the order of magnitude of one gigabyte. A common need of the researchers is to use the long term

preservation resource within iRODS as part of a seamless multi-tier data flow, however moving many small files to

that resource would deteriorate the performance of the tape library, therefore they have to package them together in

bigger files, using tar, zip or other formats. This can be done using the icommand ibun, manually or automated via

iRODS rules.

That solution is still lacking in many aspects. For example, the operation is synchronous, so in case of many users or

many files,  the system could be overloaded,  potentially  exposing the service  to  denial  of  service  attacks.  The

metadata are not part of the package, both the system level ones, like checksums, and the user defined, therefore, if

restored at a later point in time, the collection would miss important information. Naturally all these features can be

implemented with iRODS rules, but it would still be a custom implementation, the more it grows in complexity the

harder it is to maintain. For these reasons we decided to explore an alternative path which is the main topic of this

presentation: offloading the package management (creation, checksum computation, compression) to an external

library  compliant  with  the  standard  BagIt  format,  using  the  rules  to  implement  only  the  data  staging  and  the

asynchronous mechanism.

We argue that our approach can be extended beyond the archiving flow. It can be viewed as a way to export and

import data and metadata of collections in a consistent way between iRODS and other services, among which the

tape library is just  one, but others can be included such as publishing tools,  data repositories,  data clouds,  etc.

Moreover, the library we use, bdbag, would support further extensions. For example, it allows to create packages

containing only the metadata and pointers to the real data, which could be considered virtual packages that can be

exported without moving the real data, but rather delegating the real data transfer to the user client. Or, also, it

supports the definition and validation of profiles  on top of  the basic BagIt  structure,  which formalize complex

package structures making them shareable and discoverable.
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ABSTRACT

In this contribution, we present a transnational iRODS federation as a backend for distributed computational/Big

Data workflows from science and industry. This system, the "LEXIS Distributed Data Infrastructure (DDI)", has

been built in the project "Large-Scale EXecution for Industry and Society" (LEXIS, H 2020 GA 825532). It makes

use of EUDAT B2SAFE, B2HANDLE, and B2STAGE on top of iRODS, to support a variety of use cases, starting

with the three LEXIS Pilots: Simulations in Aeronautics Engineering, Earthquake/Tsunami Analysis, and Weather

and Climate Prediction. Our presentation covers different aspects of setting up this system, from system to high-

level concepts. We layout our experience in setting up a version of HAIRS (High-Availability iRODS System, cf.

contributions of Kawai  et  al.  to this meeting series),  where we adapted the concept,  and of installing EUDAT

modules on top of it to provide the functionalities required within LEXIS. Afterward, we lay out our approach to

integrating the iRODS system with the LEXIS platform, based on providing REST APIs to control and address the

data system.  These  REST APIs are  mostly custom LEXIS developments,  based  on conventional  programming

interfaces (e.g. python client) available for iRODS. Finally, we give a short status and outlook on the application of

the system, and further aspects of our project interesting for the iRODS community (e.g., authentication via OpenID

Connect  with adaptation to  Keycloak,  collection  structure  of  the iRODS system and backend systems,  as  also

described in LEXIS publications).

Keywords

iRODS, EUDAT, High Performance Computing, Workflows

INTRODUCTION

The LEXIS project takes on a challenge of orchestrating complex HPC, Cloud and Big Data workflows on the

resources  of  competitive  European  Supercomputing centers  (LRZ/DE,  IT4I/CZ,  ICHECH/IL).  It  is  a  European

Horizon 2020 project  which runs between 2019-2021. The challenge has three main parts.  The first  one is the

orchestration of workflows running on geographically distributed, federated Cloud and HPC resources. The second

challenge is to provide a unified way for storing complex data and transparently move it between the compute

resources, which led us to design the iRODS-based LEXIS Distributed Data Infrastructure (DDI). The last challenge

is to provide a robust and secure Authentication and Authorization Infrastructure (AAI) for the whole platform.

The orchestration system in the LEXIS Platform is based on the advanced distributed orchestration framework

YORC [1] which uses an extension of the TOSCA [2] standard to describe the workflows. The orchestration system

then uses the LEXIS DDI to manage the data used by the individual workflow tasks [3] [4].
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This paper focuses on integration of iRODS [5] in the LEXIS platform, where it is used as core of the DDI. The

platform is implemented by a set of services which communicate by REST-based APIs with zero-trust architecture

based on JWT [6] tokens and the OpenID Connect [7] authentication protocol. In this work, we also briefly describe

the REST APIs we built on top of the iRODS to provide data management and staging capabilities for the platform.

LEXIS DISTRIBUTED DATA INFRASTRUCTURE

The LEXIS DDI must be able to handle large data sets (TBs) following the FAIR1 principles, must move the data

seamlessly between various locations and expose REST based APIs for the management. A schema showing the

distributed infrastructure context and with various compute and storage resources connected to the LEXIS DDI is

given in Figure 1 

The iRODS solution has  been selected as  a base of  the LEXIS DDI since it  provides sufficient abstraction of

different storage resources available at each center. Individual zones run by the centers are federated which allows

seamless  transfer  of  the  data  between  locations  while  maintaining  strict  access  policy.  Data  annotation  and

publication capabilities of the LEXIS DDI are implemented using the iRODS metadata available for each dataset

and collection. The EUDAT [8] modules B2HANDLE [9] and B2SAFE [10] are used to obtain unique identifiers

(PIDs) for the datasets stored in the  iRODS. These add-ons leverage the internal iRODS rule engine and Python

scripts.

The LEXIS DDI is formed by federated iRODS zones, which host data in a strictly defined structure, a set of REST

APIs and various support services for token exchange, monitoring, auditing and publishing data.

Figure 1 LEXIS Distributed Data Infrastructure connecting several compute and data providers 

1 FAIR data are data which meet principles of findability, accessibility,  interoperability,  and reusability cf.  e.g.

www.force11.org/group/fairgroup/fairprinciples
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IRODS OPENID INTEGRATION

Figure 2  iRODS - OpenID authentication flow in LEXIS. The three JWT transfers (marked red) are substituted by transfers

of the token hash (green)

The core iRODS software provides basic authentication mechanisms such as username / password combinations,

and more advanced authentication is handled via plugins. An OpenID authentication plugin was developed by Kyle

Ferriter in 2018 [11], and the iRODS python client was forked to support OpenID access, although the changes were

not ported upstream, and it did not see widespread use. The current iRODS plan, to the authors’ knowledge, is the

integration of OpenID functionality directly in iRODS in an upcoming version.

We used these plugins as a starting point to integrate the DDI with LEXIS AAI, but some changes were needed. The

most significant one relates to the fact that Keycloak [12] (the  Identity Managment solution which LEXIS uses)

creates quite large JWT [6] tokens, larger than the space allocated for them in the iRODS plugin, which uses the

1024 bytes long username field to transfer tokens. Our solution checks if the token is too large, and hashes it before

sending it to iRODS (Figure 2). On the iRODS plugin side, the changes include an additional check in the database

to see if a token exists with the proper hash. This necessitates that the webportals using iRODS as a back-end pre-

authorize the token by calling the iRODS broker (the plugin component taking care of interfacing with the Keycloak

server.

Further changes included bugfixes and merging of upstream changes to ensure compatibility with the latest iRODS

versions. We have published the changes, although once a new iRODS version including native OpenID Connect

support is published, they will be rendered obsolete.

SETTING UP IRODS IN HIGH AVAILABILITY

Since  LEXIS  interconnects  many  different  components,  any  failure  in  one  of  the  components  can  have  huge

consequences on the entire system. To avoid a single point of failure scenario, we aimed to setup iRODS in high

availability mode in all centers involved in LEXIS. 

A version of HAIRS [13] (High-Availability iRODS System, cf. contributions of Kawai et al. to this meeting series)

was deployed. The setup consists of two iCAT servers based on the iCAT database. In front of the two servers is an

instance of HA Proxy. All three instances refer to themselves with the FQDN of the iRODS server. A request to

iRODS will be routed through the HA Proxy to one of the iCAT servers.

The weak remaining then is the iCAT database.  If the database is down, the two iCAT servers cannot respond

appropriately to requests. To secure the database setup, we opted for a deployment based on repmgr [14] and pgpool

[15].  The  setup  consists  of  two  PostgreSQL  instances.  On  both  instances  repmgr  is  deployed  to  manage  the

replication between the two instances. At any point in time, only one instance is the primary instance and read and
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write  access  is  allowed.  The  second  instance  is  in  secondary  mode.  All  updates  to  the  primary  database  are

propagated to the secondary via repmgr. In front of the PostgreSQL instances is an instance of pgpool. The main

role of pgpool is to manage and trigger the failover once the primary database is down. In that scenario, pgpool

declares the secondary database as primary and allows read and write access to it. The LEXIS high availability setup

is depicted in Figure 3.

Figure 3 LEXIS redundant iRODS setup per zone 

INTEGRATION WITH EUDAT

The EUDAT [8] Collaborative Data Infrastructure (CDI) offers different data management solutions for European

research. Since LEXIS and EUDAT aim at achieving the FAIR data principles, we decided to deploy some of their

components  such  as  B2HANDLE [9],  B2SAFE [10] which  relies  on  iRODS,  and  B2STAGE [16] in  LEXIS.

B2HANDLE guarantees long term references to data by assigning persistent identifiers (PID). B2HANDLE is based

on the HANDLE [17] system.

Another important EUDAT component is B2SAFE. B2SAFE is employed in LEXIS to manage the replication and

long-term preservation of data between the different iRODS zones. This helps in optimizing the access for users on

the different computing systems available in LEXIS.

To move data from a non iRODS environment to iRODS, B2STAGE was deployed. B2STAGE employs a GridFTP

server on top of iRODS and allows user to move data in or out of iRODS via basic GridFTP commands, 
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CUSTOM APIS AND THE USE OF THE IRODS PYTHON CLIENT

The LEXIS DDI provides custom APIs to communicate with the webportal of the LEXIS platform and the LEXIS

orchestrator.  This helps in automating the execution of workflows.  The APIs  are divided into three categories:

LEXIS iRODS API, Staging API, and encryption/compression API.

The LEXIS iRODS API manages the lifecycle of users and projects. The API provides endpoints to create and

delete users across the federated iRODS zones, create projects and collections across the federated iRODS zones, set

user’s ACLs based on roles in LEXIS, and to obtain tokens that are used to connect to iRODS.

The Staging API provides the possibility to move data between the DDI and our cloud computing and HPC systems.

The  API  is  based  on  Django [18] and  uses  LEXIS  Authentication  and  Authorization  Infrastructure  (AAI)  to

authenticate users’ requests. Since data transfer is a time-consuming task, a queuing system using Celery [19] and

RabbitMQ [20] is deployed. The user receives a request ID when initiating a request. The ID can be used to track the

status of the data transfer, which proceeds asynchronously.

To improve data transfer rate and to secure sensitive data in iRODS, the encryption/compression API is used. The

API uses a similar queuing system and performs compression on datasets with large numbers of small files for

transfers. The encryption works asynchronously: Data are encrypted when moving to iRODS and then decrypted

when  staged  to  the  target.  The  API  uses  aes-256-ctr  encryption  mode  and  runs  on  a  dedicated  LEXIS  Burst

Buffer/Data Node with 64 CPU cores, and large NVMe disk. 

CONCLUSION

The distributed data infrastructure showcased in this paper provides a fault-tolerant back-end for the data tasks in the

LEXIS European  Cloud-HPC Workflow Platform (H2020),  including  efficient  data  transfer  across  sites  across

Europe. We leverage iRODS capabilities to federate geographically distributed data sources, and EUDAT services

(especially B2SAFE) to ensure DATA FAIR principles. 

We are currently at the stage of benchmarking and optimizing the performance of the system. We tested different

iRODS setups,  and  finally  selected  the HAIRS deployment  with redundant  PostgreSQL setup due to  its  high-

availability properties. We have also made extensive use of the iRODS Python client as part of the interfaces to

other LEXIS components. For further information, the reader is invited to have a look at our book publication [21].

Setting up iRODS-OpenID Connect authentication in order to provide a single-login interface across all the LEXIS

components was a challenging endeavor, due to some iRODS assumptions (maximum token size) which were not

satisfied by our OpenID solution (Keycloak), and which required modifications to the iRODS authentication plugin.

We therefore look forward to the finalization of the iRODS work on native implementation of OpenID Connect

authentication.
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Hierarchical indexes of large file systems and iRODS
Peter Braam
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ABSTRACT

Understanding the content of high-performance file systems encounters at least  two major challenges.  First, the

number of items in such file systems now regularly exceeds a billion items and can be much larger. Scanning such

file systems is very time-consuming. Secondly, the rate at which content can be added to such parallel file systems

can easily exceed the rate at which change events can be digested.

During the rise of campaign storage and independently also seen in the APFS file system, a few hierarchical content

indices were promoted. Such systems can provide a logarithmic search for items with particular properties and may

be a useful intermediary between iRODS and extreme file systems.

In this lecture, I will give an overview of this approach, what has been implemented, and some of the open questions

in this area.
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Herons, Yaks and Technical Debt - 2020 at Sanger
John Constable
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ABSTRACT

In 2020 the Informatics Systems Group at Sanger had a challenge - get the iRODS estate up to a supported, patched,

latest reasonable version, both application and Operating System.

It  also had another  challenge -  move 8PB off  of  ageing  hardware  to  new equipment,  preferably  with no user

disruption. Of course, we had to add a few more PB of capacity, too.

While that was going on, we also planned to deploy Proof Of Concepts on the Indexing plugin, NFSRODS and the

MetalNX GUI. Replacing the HA system seemed a good idea too. Oh yes, and we should probably catch up on our

backlog.

Did we mention this all had to happen while supporting the science of sequencing this COVID thing (you may not

have heard of it)?

Come along to hear all the war stories, and be prepared to count Yaks and Unicorns.
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iRODS Policy Composition
Jason Coposky
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UNC-Chapel Hill

jasonc@renci.org

ABSTRACT

This talk will demonstrate the updates made to policy composition from last year's introduction. The code is now

real and does what was promised.
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iRODS Client Library: Python iRODS Client 1.0
Daniel Moore
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ABSTRACT

This talk will cover the last year's updates to the Python iRODS Client. These include additional coverage of the

iRODS API, better  authentication options and connection handling, atomic metadata manipulation, and parallel

transfer.
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A Year of iRODS: Lessons Learned
Ingrid Barcena Roig
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ABSTRACT

A year ago the VSC Tier-1 Data service was launched. The primary goal of this service is to offer the Flemish

researchers a platform to manage research data that is being processed using the VSC High Performance Computing

infrastructure.  iRODS was selected as basis for this service to facilitate the way the researchers create,  manage,

share and reuse research data.

The first year the platform was in a pilot phase with a reduced number of research groups from different domains

(Climate Change studies, Humanities and Arts, Life science, Technology, …).

This talk will  present  the lessons we have learned  in this first  year  designing, implementing and managing an

iRODS based platform. The current status of the project, including some of the use cases that are already using the

platform and the future plans will also be presented.
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ABSTRACT

The BRAIN-I project, a collaboration to image and study mouse brains between the Renaissance Computing Institute

(RENCI) and the UNC Neuroscience Microscopy Core (NMC) at the UNC Neuroscience Center at the UNC-Chapel

Hill School of Medicine, has been working on policy to allow researchers to do local analysis of data that is already

under management by iRODS. This paper will explain the design decisions, the policy that was developed and

deployed, and how it works alongside the rest of the BRAIN-I configuration.

Keywords

iRODS, data management, policy, brain images, neuroscience

INTRODUCTION

This project is a collaboration between multiple groups on the same campus. This includes team members from the

Renaissance Computing Institute (RENCI), Steve Cox, Director of Software Architecture, and Terrell Russell, Chief

Technologist for the iRODS Consortium. The UNC Neuroscience Microscopy Core (NMC) in the School of Medicine

is represented by Michelle Itano, the Core’s Director. The Stein Lab in UNC-Chapel Hill Department of Genetics is

represented by Jason Stein, Lab Director, and Oleh Krupa, Ph.D.

The Stein Lab studies how variations in the genome a↵ect the structure and development of the brain, and in doing

so, create risk for neuropsychiatric illnesses. One of the lab’s research projects involves using high-powered optical

microscopes to create extremely detailed images of mouse brains.

This paper represents the work done to formalize and codify the process of image data ingest and staging with an

eye for local analysis by lab technicians and managers.

ARCHITECTURE

This policy project began with iRODS already in place and NFSRODS[1] providing access to image analysis toolsets.

iRODS UGM 2021 June 8-11, 2021, Virtual
[Authors retain copyright.]
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Figure 1. BRAIN-I Architecture

Figure 1 shows the connections between the RENCI Europa Data Center and the Neuroscience Lab in the School of

Medicine. The iRODS Catalog Service Provider (braini-rods.renci.org) runs in a long-running virtual machine

provisioned by VMWare connected to long-term storage provisioned and backed up by RENCI. Various iRODS

clients connect to this provider, including the iCommands[2], Metalnx[3], and NFSRODS. NFSRODS runs in the

Kubernetes[4] cluster and provides NFSv4.1 access to Data Objects within iRODS to various other applications made

available by Kubernetes. An iRODS Catalog Service Consumer is running in the Neuroscience Lab and provides

local storage closer to the microscope(s), used for ingest. The policy described in this paper is concerned with the

relatively hands-free management of the ingested data and then the ongoing analysis of that data.

USE CASES

There are four main use cases defined and agreed to by the stakeholders of this project. These were developed over

2-3 months in late 2020 through brainstorming sessions, collaborative editing, and reflective meetings and cover the

desired and expected workflows of lab members at the time.

The stakeholders involved included scientists doing the capture, lab technicians, the lab director, the microscopy core

director, the RENCI infrastructure team, the iRODS development team, and the iRODS administrator of this Zone.

The four main use cases and their envisioned solutions are provided and discussed in the next four subsections,

numbered NMC1 through NMC4.

NMC1 - Import of data to iRODS

A lab member saves image data into a well-known location on a local disk attached to the iRODS server (Maybe

a folder named ’iRODS import’). (Maybe this can be automated later, but for now... just ’saved/moved’ is good

enough). The lab member expects the data to appear in iRODS, perhaps with some particular permissions, perhaps

with some particular metadata (provided or extracted or associated). The lab expects the data to be managed/moved

o↵ the local disk, so it doesn’t fill up. Ideally, once in iRODS, there would be a backup (replica) made to a second

more secure location. Once copied into another iRODS location with more storage, the import files are removed from

the local disk.

SOLUTION - Storage Tiering[5] (and possibly Automated Ingest[6])
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NMC2 - Import of data to iRODS and local analysis

A lab member saves image data into a well-known location on a local disk attached to the iRODS server (Maybe

a folder named ’iRODS import’). (Maybe this can be automated later, but for now... just ’saved/moved’ is good

enough). The lab member expects the data to appear in iRODS, perhaps with some particular permissions, perhaps

with some particular metadata (provided or extracted or associated). The lab expects the data to be managed/moved

o↵ the local disk, so it doesn’t fill up. Ideally, once in iRODS, there would be a backup (repica) made to a second

more secure location. Once copied into another iRODS location with more storage, the import files are moved to an

‘analysis’ folder on the local iRODS server.

SOLUTION - Storage Tiering (and labels for ’local analysis’) local analysis could be read-only in the vault, perhaps

with permissions changed(?!), or another local copy if read/write was important. And any products of local analysis

would get routed back through the front door of iRODS. Also possible... NFSRODS, but concerns about network

latency are real.

NMC3 - Local iRODS analysis

Analysis of files on the local (NMC) iRODS server from the ’analysis’ folder using the local hardware accessible.

Could be a custom python script, Matlab code, or through iRODS on ImageJ or Napari. Ideally, would utilize as

much computational power as is available, without making it impossible for another user to run a job. Not sure if this

can be set to somehow utilize up to 100% or 90% power, but then if another job is started to drop down to maybe

75% or something like that? Or maybe only do that if the job is set to last more than 6 hours, or some relatively

arbitrary ’long time’. Leaving 25% for other jobs to still run during that time period? Otherwise for ’shorter’ times

jobs would be run sequentially with full computational power? Would ideally save analyzed files into the ’iRODS

import’ folder where again it would be copied and moved to a larger external iRODS server, and removed from the

local drive to free up space. Files remaining in the ’analysis’ folder would still be accessible to run code on locally.

SOLUTION - Handled by the solution to NMC2

NMC4 - Grant external user iRODS access to published data

Published data would be put on an iRODS protected folder and available post publication for download. Ideally, this

would be a very quick process, not requiring a person to verify the request validity. But would also be good to mark

how many times files had been downloaded, track who downloaded (maybe just by email address and verifying that

address was real?), and if possible allow users to only download specific file sets and not the entire file set. Would

want to also ensure that downloading this data wouldn’t take up all the bandwidth for the iRODS server.

SOLUTION - Storage Tiering and labeling of particular Collections or Data Objects - policy can fire and run the

’publish()’ function, whatever that is defined to be.

DESIGN GOALS

After agreeing on the interesting use cases, the commonalities were identified and turned into design goals that would

satisfy the use cases. These were presented as three ’reasons’ to move data around the iRODS Zone.

First, the initial ingest of microscope data would be handled by Automatic Storage Tiering, providing a hands-free

migration from the local storage in the lab to the long-term storage in the RENCI data center.

The second design goal was manual targeting of interesting data to NMC for local analysis. This could be performed

by anyone with appropriate permission in the system and would have a relatively quick e↵ect of staging the data for

the scientists to run their local software tools.

The third design goal was manual targeting, using the same mechanism, to a future location as ’published’ or to

prepare for being published by an as-yet-determined pipeline. This last design goal was deemed to be less important
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than the first two, and would later become ’future work’.

Proposed Solution

To satisfy the design goals, the following configuration and algorithm was proposed.

There would be three di↵erent iRODS storage resources, nmc-ingest and nmc-analysis located on the lab worksta-

tion, and renciResc, theh primary long-term storage at RENCI.

For the first use case (NMC1), the iRODS automated Ingest tool would be configured to register new files ’in-place’

into nmc-ingest. The iRODS Storage Tiering framework would be configured to automatically migrate data (replicate

and trim) from nmc-ingest to renciResc after a file had been at rest for 12 hours.

For the local analysis use cases (NMC2 and NMC3), there would be two dynamic policy enforcement points (PEPs)

that would fire whenever a Collection or Data Object was tagged with the iRODS AVU of nmc and analysis (no

Unit). After metadata was added, the policy would replicate the Collection or Data Object to nmc-analysis and set

physical permissions to read-only for other unix users on the NMC workstation to be able to perform analysis. After

metadata was removed, the replica(s) on the NMC workstation would be trimmed. The original replica(s) would still

remain in the long-term storage at RENCI.

The publishing use case (NMC4) would also be handled by a PEP firing after metadata was added to a Collection or

Data Object and replicate, then checksum, and then generate a DOI in a public-accessible area of the server.

Takeaways

The main takeaways from this proposed solution were four-fold:

1) There would always be a replica in primary storage at RENCI after the initial ingest and migration progress.

This migration could be from nearly ’real-time’ to ’1 hour’ to ’1 day’ or ’1 week’ and could be changed at a later

date. Additionally, the ’minimum restage tier’ could be set to renciResc, so no data ever restages back to the NMC

workstation upon retrieval or use.

2) Manual tagging and replication gives control to the lab participants to manage their limited disk space on the lab

workstation.

3) Manual tagging will be easily extended to provide for a future publication workflow.

4) Existing and future Cloud Apps will pull from the always-available and in-the-same-datacenter renciResc, without

triggering any replication or data movement other than to the tool itself.

IMPLEMENTED POLICY

As part of the BRAIN-I project, this iRODS policy set defines the policies for data analysis, replication, and retention

in the NMC.

https://github.com/irods/irods_policy_examples/tree/main/nmc_analysis[7]

There are two parts of the policy managing the data flow within the iRODS Zone:

Automatic

The iRODS Storage Tiering Framework (Figure 2) is handling newly ingested data and moving it into the long-term

storage housed at RENCI. RENCI is providing storage and visualization tooling that prioritizes that local, long-term

storage. No new policy was written for BRAIN-I for this deployment. The Tiering Framework handled the use case

requirements out-of-the-box and only required configuration.
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Figure 2. iRODS Storage Tiering Framework

Manual

When NMC sta↵ want to run local analysis on data already in the iRODS namespace, they can ’tag’ the data of

interest, and this policy will manage the replication to their local machine, set permissions, and prevent removal

of that data from the system until it has been ’untagged’. Once ’untagged’, the data will be trimmed from the

researchers’ local storage and remain housed only in long-term storage at RENCI.

This custom policy was designed, written, deployed, and tested for BRAIN-I specifically. However, this mark-and-

sweep approach is generic enough it could be extended to meet similar workflow requirements in other domains.

The sweeper does three things every time it fires (configured to be every 30 seconds). It checks which collections and

data objects need to be enqueued for replication, and it checks which data objects need to be trimmed.

callback.nmc_replicate_dataobjs_under_tagged_collections();

callback.nmc_replicate_tagged_dataobjs();

callback.nmc_trim_untagged_dataobjs_on_target_resource();

The other PEPs only run pre-checks to see whether the items being operated on are ’tagged’ and therefore protected

from being manipulated because they are ’in analysis mode’.

TESTING

To prove that the policy was behaving as expected, a series of BATS[8] tests were written to assert that the system was

in a good state before and after each required operation. These scenarios include the simple tagging and untagging
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of items in the iRODS Zone, but also their recursive counterparts. When an item is tagged for analysis, neither it

nor its descendents can be removed manually, and this must be enforced by policy.

$ git clone https://github.com/bats-core/bats-core

$ time bash bats-core/bin/bats test_nmc_analysis.bats

3 tag a collection

3 tag a data object

3 untag a collection

3 untag a data object

3 overwrite a tagged data object

3 overwrite a data object under a tagged collection

3 trim a tagged data object - DISALLOWED

3 trim a data object under a tagged collection - DISALLOWED

3 remove a tagged data object - DISALLOWED

3 remove a tagged collection - DISALLOWED

3 remove a data object under a tagged collection - DISALLOWED

3 remove a collection under a tagged collection - DISALLOWED

3 remove a collection containing a tagged data object - DISALLOWED

3 remove a collection containing a tagged collection - DISALLOWED

3 untag an enqueued data object - DISALLOWED

3 untag a collection with an enqueued descendent data object - DISALLOWED

16 tests, 0 failures

real 2m4.745s

user 0m8.606s

sys 0m2.172s

STATUS

At the time of this paper, the BRAIN-I project had no items in active analysis, but had nearly 1 million data objects

under management representing nearly 13TB of storage.

$ iquest "%s" "select count(DATA_ID) where RESC_NAME = ’nmc-ingest’"

0

$ iquest "%s" "select count(DATA_ID) where RESC_NAME = ’nmc-analysis’"

0

$ iquest "%s" "select count(DATA_ID) where RESC_NAME = ’renciResc’"

921670

$ iquest "%s" "select sum(DATA_SIZE) where RESC_NAME = ’renciResc’" \

| awk ’{print $1/1024^3 " GB "}’

12743.7 GB

LIMITATIONS AND FUTURE WORK

The original proposed solution included ingest, tiering, local analysis, and publication, but these were not all imple-

mented in the initial rollout of this policy.
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The Automated Ingest could be deployed with a Landing Zone pattern to catch and process the data coming from

the microscopes. This was not implemented due to the microscope not being directly attached to the network. Lab

personnel currently need to manually transfer the data to the NMC workstation before running iput.

Publication can easily be added once more analysis is done and useful data products are ready to be shared with

others.

Additional microscopes could be added to this configuration without much trouble. The additional concerns would

appear as namespacing problems and should be easily mitigated with good metadata and naming practices.

As the NMC becomes accustomed to having their images available in a platform like BRAIN-I, we expect additional

labs to become interested in having something similar or being added to the BRAIN-I infrastructure directly. This

should also scale as needed, since additional storage capacity could be added at RENCI and/or at other labs or data

centers. The unified namespace of iRODS already accounts for growth and expansion of this kind.

SUMMARY

This paper covers the design process and results of providing a read-only local analysis staging policy for the BRAIN-I

project at UNC-Chapel Hill. Live code is available and can serve as a prototype of policy for similar use cases.

iRODS proves flexible and powerful enough to provide transparency and control for a relatively small lab while

demonstrating that the platform is capable of driving this type of policy-based approach for any organization.
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ABSTRACT

Storage offerings from third parties (including cloud providers) have made significant inroads in the last few years.

Many clients and customers may now request to bring their own storage into an existing managed software stack or

environment. This panel will discuss the opportunities, the costs, and the complexities involved in servicing these

types of requests.
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ABSTRACT

This talk will cover the technology (object storage with S3 interface to tape) and existing use cases for XtreemStore

as well as recent work to certify against iRODS 4.2.7 and the iRODS S3 storage resource plugin.
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ABSTRACT

The latest  developments  in the Kanki  project  are presented,  i.e  the recent  work which has been carried  out in

collaboration with the iRODS consortium for both the modernizing of the Kanki CMake build environment and the

refactoring of the code base for the next generation of iRODS client APIs. Many of the old fully C-compatible

constructs have now been replaced and/or wrapped with object-oriented C++17 interfaces while enabling RAII. The

simultaneous  iRODS  connections  are  now  being  pooled  into  connection  pools,  from  which  worker  threads

(instantiated from thread pools) can reserve their exclusive comms channel to an iRODS agent and perform client-

side RPCs asynchronously. This enables Kanki to become a fully parallel-tasking high-performance iRODS client

unlocking more and more of the new parallelism found in later iRODS versions.
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ABSTRACT

At the UGM 2018, we presented Yoda, a system for reliable, long-term storing and archiving large amounts of FAIR

research data during all stages of a study. Yoda deploys iRODS as its core component, customized with more than

10,000 lines of iRODS rules. With the iRODS Python rule engine plugin, we rewrote most of our rules to Python

and developed an API for the Yoda web portal. Meanwhile the Yoda web portal was still communicating with

iRODS trough the PHP client. This is the story of migrating the Yoda web portal from the PHP to the Python

iRODS client.

iRODS UGM 2021, June 8-11, 2021, Virtual

Author(s) retain copyright.

109



110



Leveraging iRODS for Scientific Applications in AWS
Cloud

Radha Konduri

Bristol Myers Squibb

radha.konduri@bms.com

Dmitry Khavich

Bristol Myers Squibb

Dmitry.Khavich@bms.com

ABSTRACT

Advanced  digital  microscopes  have  revolutionized  biology  and  pharmaceutical  research,  generating  massive

volumes of files like images, including 3D and time series data. But scientists can't study what they can't measure.

The need to quantify biological characteristics, such as cell count, or to calculate metrics such as drug occupancy,

has driven a need to seamlessly ingest, annotate, share, analyze and archive image datasets. Our projects seek to

make image datasets easily discoverable,  accessible,  transformable,  and analyzable,  and to ensure  that  numeric

datasets derived from image datasets are easily transferable to downstream data analysis platforms.

Objectives: On-demand instrument data search and retrieval; Phenotypic feature measurement, analysis and zero

manual intervention required to move images or metadata; Instrument files not locked in siloed analysis platforms;

Image  formats  are  globally  readable;  Image  feature  measures  can  be  integrated  and  compared;  Files  origin  /

provenance available; Ability to annotate images and features; File data set transparency or visibility / no duplicated

effort; Image data sets actionable.

BMS took the approach to implement the integrated Rule Oriented Data System (iRODS) to ingest, validate, and

assign metadata  to  instrument  file  datasets,  to  provide provenance,  and  to  make file  datasets  discoverable  and

actionable. Enable storage of numeric datasets as attributes of imaging datasets and make available for downstream

processing.

Projects – Immuno-Oncology Cellular Therapy (IOCT), Discovery Imaging Platform (DIP)
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ABSTRACT

Since iRODS 4.2.0, the iCommands have been harder to deploy in HPC environments due to the packaged nature of

the releases. Non-package-install builds were possible, but not very portable for administrators to provide binaries

for their users. This talk will cover the work done to provide extractable userspace builds of the iCommands.
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Towards a scaled system for ingest, analysis,
manipulation, and deployment of multiple HEVC

streams with HPC and iRODS
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ABSTRACT

High End Video Codec (HEVC) streams, at 4K, 8K, and 16K pixels per frame (perhaps arising from autonomous

mobile agents, at the 96 frames per second necessary for potential 3D Virtual viewing) provoke real concerns of

scalability, both for performance and throughput, if they are to be ingested, analyzed, manipulated, and deployed at

scale for multiple dozens, hundreds, or thousands of streams simultaneously. If analysis across multiple frames in a

stream, across multiple streams, and/or conditioning (as in on-the-fly editing of frames in and out from multiple

streams) are to become desirable, the existing networks, processors, memory, and data management schemes are

likely to be insufficient.

From COTS High Performance Computing design techniques, software and hardware for ingest and analysis, and

employing iRODS as a data system control, we propose a design scalable to the potential demands of intelligent

agents which must observe and report across such a large domain of HEVC inputs.
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ABSTRACT

The iRODS C++ REST API has been discussed for years, but is now ready to show to others. This paper will

explore the di↵erent aspects of what is possible with the REST API today and invite discussion about what else it

may need.

Keywords

iRODS, data management, administration, REST, API

INTRODUCTION

iRODS itself is a protocol and an API, by default running on port 1247/1248, with a server implementation written

in C++. Since iRODS was designed, the world has largely standardized on HTTP REST as a means to quickly

set up and maintain connections between di↵erent services on the Internet. This iRODS REST API is written in

C++, designed to be run alongside an iRODS Server, and provides a wrapper around the iRODS protocol, giving

new accessibility and development speed to REST-familiar developers of web services and other applications.

It runs under the same linux service account as the iRODS Server, accesses /etc/irods/server_config.json, and

uses the active authenticated rodsadmin iRODS account.

This initial REST API implementation requires to be run alongside an iRODS Server v4.2.0 or greater. It provides

endpoints for /access, /admin, /auth, /configuration, /list, /query, /stream, and /zone_report. Additional

functionality may be added if community usage generates new use cases.

MOTIVATION

The iRODS community is diverse and demands relatively unique applications depending on the science or industry

domain (microscopy, genomics, agriculture, archives, etc.) or the specific roles of its users (instrument service account,

metadata curator, policy administrator, etc.). These di↵erent use cases sometimes render general search and browse

applications (like Metalnx[1]) too powerful and/or too confusing. Many organizations now have the capacity to develop

their own specific, customized applications built with modern web-development frameworks, but these frameworks

all assume available HTTP server endpoints with which to interact.

iRODS needs to provide these type of endpoints through an easy to use, easy to deploy, fast, and lightweight REST

API.

An initial iRODS Consortium application to consume these endpoints is the new Zone Management Tool[2].

iRODS UGM 2021 June 8-11, 2021, Virtual
[Authors retain copyright.]
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IMPLEMENTATION

This API is based on the iRODS C++ API and acts as a proxied mid-tier application layer between web applica-

tions and an iRODS server. It utilizes standard JSON Web Tokens (JWT)[3] for authentication and authorization.

The REST API provides a single executable per endpoint which is designed to be compatible with containerized

deployments.

This API is designed to follow the Hypermedia as the Engine of Application State (HATEOAS)[4] model where the

client does not need to keep state and the API itself will share URLs in its responses dictating the next relevant links.

CONFIGURATION

The REST API provides an executable for each individual API endpoint. These endpoints may be grouped behind

a reverse proxy in order to provide a single port for access.

Two configuration template files are placed in /etc/irods in a packaged deployment and need to be copied and

edited before activation. The /etc/irods/irods_client_rest_cpp.json.template is the REST API template and

/etc/irods/irods_client_rest_cpp_reverse_proxy.conf.template is an nginx[5] template.

/etc/irods/irods_client_rest_cpp.json

The REST API service relies on a configuration file in /etc/irods that dictates which port is used for each endpoint,

as well as how many threads it can run concurrently and its network timeout in seconds.

{

"irods_rest_cpp_access_server" : {

"port" : 8080,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_admin_server" : {

"port" : 8087,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_auth_server" : {

"port" : 8081,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_get_configuration_server" : {

"port" : 8088,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10,

"api_key" : "default_api_key"

},

"irods_rest_cpp_put_configuration_server" : {

"port" : 8089,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_list_server" : {
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"port" : 8082,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_query_server" : {

"port" : 8083,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_stream_get_server" : {

"port" : 8084,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_stream_put_server" : {

"port" : 8085,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

},

"irods_rest_cpp_zone_report_server" : {

"port" : 8086,

"threads" : 4,

"maximum_idle_timeout_in_seconds" : 10

}

}

/etc/nginx/sites-available/irods_client_rest_cpp_reverse_proxy.conf

The nginx reverse proxy relies on a configuration file (sometimes deployed to /etc/nginx/sites-available) which

defines how to route incoming paths to the separate REST API ports.

server {

listen 80;

add_header ’Access-Control-Allow-Origin’ ’*’ always;

add_header ’Access-Control-Allow-Headers’ ’*’ always;

add_header ’Access-Control-Allow-Methods’ ’AUTHORIZATION,ACCEPT,GET,POST,OPTIONS,PUT,DELETE’ always;

location /irods-rest/1.0.0/access {

if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8080;

}

location /irods-rest/1.0.0/admin {

if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8087;

}
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location /irods-rest/1.0.0/auth {

if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8081;

}

location /irods-rest/1.0.0/configuration {

if ($request_method = ’OPTIONS’) {

return 204;

}

if ($request_method = GET ) {

proxy_pass http://localhost:8088;

}

if ($request_method = PUT ) {

proxy_pass http://localhost:8089;

}

}

location /irods-rest/1.0.0/list {

if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8082;

}

location /irods-rest/1.0.0/query {

if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8083;

}

location /irods-rest/1.0.0/stream {

if ($request_method = ’OPTIONS’) {

return 204;

}

if ($request_method = GET ) {

proxy_pass http://localhost:8084;

}

if ($request_method = PUT ) {

proxy_pass http://localhost:8085;

}

}

location /irods-rest/1.0.0/zone_report {
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if ($request_method = ’OPTIONS’) {

return 204;

}

proxy_pass http://localhost:8086;

}

}

AUTHENTICATION

This REST API relies on the use of JSON Web Tokens (JWT) to communicate identity, authentication information,

authorization information, and in the future, role-based information.

A JWT is generated by invoking the /auth endpoint. This JWT must be reused by the client as an Authentication

header for use with subsequent requests to other endpoints.

ENDPOINTS

The following endpoints describe the entirety of the REST API at this time. Additional endpoints or changes to

these initial endpoints could change the way an application may have to interact with the API. This initial look at

the REST API could change before version 1.0.0.

/access

This endpoint provides a service for the generation of an iRODS ticket to a given logical path (either a collection or

a data object). A ticket can grant read or write permission to an otherwise anonymous user.

POST Parameters:

• path: The url-encoded logical path to a collection or data object for which access is desired

Example Usage:

curl -X POST -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/access?path=%2FtempZone%2Fhome%2Frods%2Ffile0"

Returns:

An iRODS ticket token within the X-API-KEY header, and a URL for streaming the object.

{

"headers": [

"X-API-KEY: CS11B8C4KZX2BIl"

],

"url": "/irods-rest/1.0.0/stream?path=%2FtempZone%2Fhome%2Frods%2Ffile0&offset=0&limit=33064"

}

/admin

The administration interface to the iRODS Catalog which allows the creation, removal and modification of users,

groups, resources, and other entities within the zone.

POST Parameters:
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• action: dictates the action to be taken (add, modify, or remove)

• target: the subject of the action: user, zone, resource, childtoresc, childfromresc, token, group, rebalance,

unusedAVUs, specificQuery

• arg2: generic argument, could be user name, resource name, depending on the value of action and target

• arg3: generic argument, see above

• arg4: generic argument, see above

• arg5: generic argument, see above

• arg6: generic argument, see above

• arg7: generic argument, see above

Example Usage:

curl -X POST -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/admin?action=add&target=resource&arg2=ufs0&

arg3=unixfilesystem&arg4=/tmp/irods/ufs0&arg5=&arg6=tempZone&arg7="

Returns:

”Success” or an iRODS exception

/auth

This endpoint provides an authentication service for the iRODS zone.

Currently only native iRODS authentication is supported, as Basic or Native.

POST Parameters:

• None

Example Usage:

export BASE64USERPASS=$(echo -n "rods:secret" | base64 -)

export TOKEN=$(curl -X POST -H "Authorization: Basic ${BASE64USERPASS}" \

"http://localhost:80/irods-rest/1.0.0/auth")

Returns:

An encrypted JWT which contains everything necessary to interact with the other endpoints. This token is expected

in the Authorization header for the other endpoints.
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/configuration

This endpoint will return a JSON structure holding the configuration for an iRODS server. This endpoint takes a

known API key for authorization which is configured in /etc/irods/irods_client_rest_cpp.json.

GET Parameters:

Example Curl Command:

curl -X GET -H "X-API-KEY: ${API_KEY}" \

"http://localhost/irods-rest/1.0.0/configuration"

Returns:

A JSON array of objects whose key is the file name and whose contents is the configuration file.

{

"host_access_control_config.json": {

<SNIP>

},

"hosts_config.json": {

<SNIP>

},

"irods_client_rest_cpp.json": {

<SNIP>

},

"server_config.json": {

<SNIP>

}

}

This endpoint will write the url-encoded JSON to the specified files in /etc/irods.

PUT Parameters:

cfg - a url encoded JSON string of the format

[

{

"file_name": "test_rest_cfg_put_1.json",

"contents" : {

"key0" : "value0",

"key1" : "value1"

}

},

{

"file_name": "test_rest_cfg_put_2.json",

"contents" : {

"key2" : "value2",

"key3" : "value3"
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}

}

]

Example Usage:

export CONTENTS="%5B%7B%22file_name%22%3A%22test_rest_cfg_put_1.json%22%2C

%20%22contents%22%3A%7B%22key0%22%3A%22value0%22%2C%22key1%22%20%3A%20

%22value1%22%7D%7D%2C%7B%22file_name%22%3A%22test_rest_cfg_put_2.json%22%2C

%22contents%22%3A%7B%22key2%22%20%3A%20%22value2%22%2C%22key3%22%20%3A

%20%22value3%22%7D%7D%5D"

curl -X PUT -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/configuration?cfg=${CONTENTS}"

Returns:

None

/list

This endpoint provides a recursive listing of a collection, or stat, metadata, and access control information for a given

data object.

Method : GET

Parameters: path : The url encoded logical path which is to be listed stat : Boolean flag to indicate stat information

is desired permissions : Boolean flag to indicate access control information is desired metadata : Boolean flag to

indicate metadata is desired o↵set : number of records to skip for pagination limit : number of records desired per

page

Example Curl Command:

curl -X GET -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=0&limit=100"

Returns:

A JSON structured response within the body containing the listing, or an iRODS exception

{

"_embedded": [

{

"logical_path": "/tempZone/home/rods/subcoll",

"type": "collection"

},

{

"logical_path": "/tempZone/home/rods/subcoll/file0",

"type": "data_object"
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},

{

"logical_path": "/tempZone/home/rods/subcoll/file1",

"type": "data_object"

},

{

"logical_path": "/tempZone/home/rods/subcoll/file2",

"type": "data_object"

},

{

"logical_path": "/tempZone/home/rods/file0",

"type": "data_object"

}

],

"_links": {

"first": "/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=0&limit=100",

"last": "/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=UNSUPPORTED&limit=100",

"next": "/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=100&limit=100",

"prev": "/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=0&limit=100",

"self": "/irods-rest/1.0.0/list?path=%2FtempZone%2Fhome%2Frods&stat=0&

permissions=0&metadata=0&offset=0&limit=100"

}

}

/query

This endpoint provides access to the iRODS General Query language, which is a generic query service for the iRODS

catalog.

GET Parameters:

• query string: A url-encoded general query

• query limit: Number of desired rows

• row o↵set: Number of rows to skip for paging

• query type: Either ’general’ or ’specific’

Example Usage:

curl -X GET -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/query?query_limit=100&

row_offset=0&query_type=general&query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27"

Returns:
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A JSON structure containing the query results

{

"_embedded": [

[

"/tempZone/home/rods",

"file0"

],

[

"/tempZone/home/rods/subcoll",

"file0"

],

[

"/tempZone/home/rods/subcoll",

"file1"

],

[

"/tempZone/home/rods/subcoll",

"file2"

]

],

"_links": {

"first": "/irods-rest/1.0.0query?query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27&

query_limit=100&row_offset=0&query_type=general",

"last": "/irods-rest/1.0.0query?query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27&

query_limit=100&row_offset=0&query_type=general",

"next": "/irods-rest/1.0.0query?query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27&

query_limit=100&row_offset=0&query_type=general",

"prev": "/irods-rest/1.0.0query?query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27&

query_limit=100&row_offset=0&query_type=general",

"self": "/irods-rest/1.0.0query?query_string=SELECT%20COLL_NAME%2C

%20DATA_NAME%20WHERE%20COLL_NAME%20LIKE%20%27%2FtempZone%2Fhome%2Frods%25%27&

query_limit=100&row_offset=0&query_type=general"

},

"count": "4",

"total": "4"

}

/stream

Stream data into and out of an iRODS data object

PUT and GET Parameters:

• path: The url-encoded logical path to a data object

• o↵set: The o↵set in bytes into the data object
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• limit: The maximum number of bytes to read

Example PUT Usage:

curl -X PUT -H "Authorization: ${TOKEN}" -d"This is some data" \

"http://localhost/irods-rest/1.0.0/stream?

path=%2FtempZone%2Fhome%2Frods%2FfileX&offset=0&limit=1000"

Returns:

Nothing, or iRODS Exception

Example GET Usage:

curl -X GET -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/stream?

path=%2FtempZone%2Fhome%2Frods%2FfileX&offset=0&limit=1000"

Returns:

The data requested in the body of the response

/zone_report

Requests a JSON formatted iRODS Zone report, containing all configuration information for every server in the zone.

POST Parameters:

• None

Example Usage:

curl -X POST -H "Authorization: ${TOKEN}" \

"http://localhost/irods-rest/1.0.0/zone_report"

Returns:

JSON formatted Zone Report

{

"schema_version": "file:///var/lib/irods/configuration_schemas/v3/zone_bundle.json",

"zones": [

{

<snip>

}]

}
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FUTURE WORK

This initial look at the new iRODS C++ REST API covers the majority of our use cases and design goals. We

expect there to be some changes as we become more familiar with JWT usage and deployment patterns. Additional

functionality is expected to grow around configuration management, as iRODS has never allowed outside processes

to manipulate its configuration before. Handling zone-wide configuration in a single location has never been possible,

so care must be taken to make sure there are su�cient protections in place (dry-run, rollback, etc.).

SUMMARY

The iRODS C++ REST API can now provide new access and increased speed of client development to modern web

development frameworks. The Zone Management Tool (ZMT) is being built alongside this new API and the needs

of each are driving the development process.

The functionality included in this first release is su�cient for full-featured applications to be rapidly built and deployed

for the public, or for specific internal positions in large organizations.
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ABSTRACT

NFSRODS has been updated to version 2.0 and now provides significant performance improvements and caching

capabilities. This talk will cover what has changed and future work.
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INTRODUCTION

Last year’s NFSRODS 1.0 release[1] marked the point where iRODS filesystem integration became easy for system

administrators to deploy and support. The functionality was in place, but there had been no usage. After a few

deployments, the feedback began to come in and with large numbers of users and files, NFSRODS was not capable

of keeping up. This work describes the e↵orts in moving from NFSRODS 1.0 to NFSRODS 2.0[2].

CHANGES SINCE 1.0

Many of the changes in NFSRODS 2.0 are incremental and represent standard software development and refinement.

These include updates of its software dependencies, cleanup of warnings, and better integration with a Docker-based

deployment environment.

Since iRODS 4.2.9 incorporated the functionality of the Update Collection MTime Rule Engine Plugin[3], that

dependency on the server has been relaxed.

More substantial changes are represented by the work done to increase performance for the list operation.

NEW CONFIGURATION

NFSRODS 2.0 introduces six additional configuration options for deployment. These represent four cache timeout

settings, a boolean to determine whether overwriting existing data objects is allowed through the NFS interface, and

a workaround for an Oracle-backed iRODS deployment.

// The refresh time for cached iRODS object type information.

"object_type_refresh_time_in_milliseconds": 300000,

// The refresh time for cached iRODS user permissions information.

"user_permissions_refresh_time_in_milliseconds": 300000,

// The refresh time for cached iRODS user type information.

iRODS UGM 2021 June 8-11, 2021, Virtual
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"user_type_refresh_time_in_milliseconds": 300000,

// The refresh time for cached GenQuery results used to produce the

// output of a list operation.

"list_operation_query_results_refresh_time_in_milliseconds": 30000,

// Specifies whether the force flag should be applied when overwriting

// an existing file. If this option is false, an error will be reported

// back to the client.

"allow_overwrite_of_existing_files": true,

// Allows NFSRODS to make adjustments for running against an Oracle-backed

// iRODS deployment.

"using_oracle_database": false

LIST OPERATION

The list operation of NFSRODS 1.0 had performance issues. It could not handle large collections. This was manifested

by the return of truncated and inconsistent results. iRODS servers that were backed by Oracle databases were not

returning the correct results. Redundant information was being queried from the catalog, and NFSRODS was naively

executing identical queries upon every operation without caching any results.

To fix these list operation shortcomings, NFSRODS 2.0 now caches many, if not all, results retrieved from the Jargon

(Java)[4] layer which interacts with iRODS. The Oracle support has been corrected and the default log level has been

lowered to reduce time spent writing to disk.

Additionally, best practice has been established to turn o↵ color listings in the calling terminal to reduce the number

of stat operations and therefore reduce the network tra�c with the connected iRODS server.

PERFORMANCE

To test the new speed of NFSRODS 2.0, the following test harness was configured:

• iRODS provider (backed by PostgreSQL) running on Ubuntu 16.04 (32 cores)

• NFSRODS container running on the same machine hosting the provider

• Set NFSRODS log level to INFO

• Mount command: sudo mount -o port=2050 localhost:/ /mnt/nfsrods

• Timing command: time /bin/ls <collection> | wc -l

Collection Size 1.0 2.0 (no cache) 2.0 (cached)

500 1m7.211s 0m0.857s 0m0.046s

1,000 3m49.246s 0m0.708s 0m0.041s

3,000 31m45.147s 0m2.345s 0m0.045s

6,000 86m56.771s (results truncated) 0m5.274s 0m0.052s

10,000 87m18.675s (results truncated) 0m9.302s 0m0.058s

Table 1. Performance Comparison between NFSRODS 1.0 and 2.0 (n=5)
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Table 1 illustrates both the troubles that NFSRODS 1.0 had with large collections as well as the increased performance

of NFSRODS 2.0. Each cell represents the mean of 5 runs, except the two largest collection sizes (6,000 and 10,000)

for NFSRODS 1.0 where the results were truncated. An initial listing of a collection with 3,000 data objects was

reduced by a factor of over 800x from over 31 minutes to just over 2 seconds. Once that listing information had been

seen by NFSRODS 2.0 and cached, a second listing returned the results from local memory in 1/20th of a second,

another 50x speedup.

These improvements make NFSRODS appear much more transparent to the user and ready for production deploy-

ments.

FUTURE WORK

While this optimization work makes NFSRODS usable, there is still work to be done. Large file transfers are still

serial and can appear painfully slow to users who are used to the multi-threaded, network saturating performance of

the iCommands. Parallel I/O support is now the highest priority feature to be added next.

Support for iRODS metadata, perhaps via extended file attributes will be investigated since iRODS metadata is

currently not visible through the NFS network interface. Additionally, test coverage and error messages need to be

improved.

SUMMARY

NFSRODS 2.0 provides a significant increase in performance for collection listings. This deployable production release

will encourage continued community feedback about the best way to present iRODS to existing tools and applications.
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ABSTRACT

The iRODS Zone Management Tool (ZMT) is a new client that uses the iRODS C++ REST API. It has a design

goal of handling the administrative side of running an iRODS Zone (managing users/groups/resources, etc.). This

paper will introduce the ZMT, current status, and future work.
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INTRODUCTION

The iRODS ecosystem has historically been driven by user demand and much community development. Over the

years, this has led to a number of di↵erent software clients issuing requests to the iRODS server. Some of those clients

have been primarily for rodsuser-level operations, and others may have included some rodsadmin-level operations.

This new client will be rodsadmin-only, and is designed to provide a baseline and future home for a single-pane-of-

glass to administer an entire iRODS Zone. ZMT aims to include managing users and groups and resources, but also

server configuration itself, including policy editing, deployment, and rollback.

This paper provides a first look at the work so far.

DESIGN GOALS

The iRODS community needs a a user-friendly, easy to deploy, fast, and light-weight web-based graphical user interface

(GUI) to manage an iRODS Zone. The iRODS Zone Management Tool[1] meets those design goals.

ZMT is based on the React.JS[2] single page application (SPA) framework and speaks only HTTP/HTTPS to the

configured iRODS C++ REST API[3] endpoint. It exposes existing configuration of all iRODS Servers in a Zone and

an administration endpoint to manipulate system elements similar to iadmin.

It is envisioned that ZMT will assume the administration duties of Metalnx[4] which should free that codebase of

some of its historical complexity. As a rodsadmin-only tool, ZMT will continue to focus on administrator concerns.

CONFIGURATION

ZMT configuration is handled by a single environment file that is loaded at application startup. This .env file provides

read-only variables that can control di↵erent aspects of a ZMT deployment.

iRODS UGM 2021 June 8-11, 2021, Virtual
[Authors retain copyright.]

1

133



The minimum required configuration involves a single value representing the iRODS C++ REST API endpoint for

the iRODS Zone that ZMT is being used to manage:

REACT_APP_REST_API_URL=protocol://host:port

Additional configuration options are available to control which port ZMT itself runs on and how the application looks.

A sample.env file is included in the repository for reference:

LISTEN_PORT=3000

REACT_APP_REST_API_URL=protocol://host:port

REACT_APP_APPBAR_LOGO=iRODS-logo.jpg

REACT_APP_LOGIN_LOGO=iRODS-logo-1.png

REACT_APP_BRANDING_NAME=Zone Management Tool

REACT_APP_PRIMARY_COLOR=#04bdaf

REACT_APP_SECONDARY_COLOR=#ffffff

ENDPOINTS

The initial release of the ZMT includes four endpoints, represented in the left sidebar as sections of the web application.

Each section provides visibility over and a↵ords management of a particular ’noun’ in the iRODS Zone’s namespace.

These include /servers, /resources, /users, and /groups. The / (or /home) endpoint serves as an overview or

dashboard and will be populated in future work.

/servers

The /servers section provides a table view (Figure 1) of basic server information in the local iRODS Zone. Displayed

columns include, for each server, the role (Catalog Service Provider or Catalog Service Consumer), the hostname, the

number of attached storage resources, and the operating system and version of that machine.

The data in this table is gathered from the results of querying the iRODS REST C++ REST /zone_report endpoint

(similar to the output from izonereport. The table provides paging for a large number of servers and each column

is sortable in two directions.

Figure 1. ZMT /servers - Table View
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More details about each server are available in the Details View (Figure 2). This information includes the contents

of each server’s server_config.json file. Future work will allow for manipulation of the server information, but it is

not editable via ZMT at this time.

Figure 2. ZMT /servers - Details View

/resources

The /resources section provides two di↵erent views.

Similar to /servers, the table view (Figure 3) is a sortable set of columns including the name, type, associated

hostname, and vault path of each resource. The listing can be live filtered by name and provides functionality for

creating, renaming, removing, and otherwise updating resources (including context strings).

3

135



Figure 3. ZMT /resources - Table View

The tree view (Figure 4) shows the resource hierarchies of the connected Zone with the parent-child relationships

between the composable resources[5].

The tree provides drag-and-drop editing capability of these parent-child relationships. A series of edits can be staged

and reviewed before being undone or saved to the server. This allows an administrator to minimize the window of

time when the resource hierarchies are being updated to their new target state.

Figure 4. ZMT /resources - Tree View
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/users

The /users section lists the users defined in the local Zone’s catalog (Figure 5). This includes both local and remote

(federated) users. The table can be paged and is filterable. New users can be created and users can be removed.

Figure 5. ZMT /users - Table View

When editing a particular user (Figure 6), the existing groups are listed and whether this user is a member of each

group. A user can be added or removed from groups in this view.

Figure 6. ZMT /users - Editing Group Membership

/groups

5

137



The /groups section functions similarly to /users. The table view (Figure 7) lists group name and the number of

users in each group and allows for editing a group’s membership. The table can be paged and is filterable. New

groups can be created and groups can be removed.

Figure 7. ZMT /groups - Table View

When editing a particular group (Figure 8), the existing users are listed and whether they currently belong to this

group. Users can be added or removed from the group in this view.

Figure 8. ZMT /groups - Editing Group Membership

iRODS REST API Endpoint Connection
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The footer of the ZMT shows the iRODS REST API endpoint connection indicator. The ZMT uses four REST API

endpoints to provide the di↵erent views (/admin, /auth, /query, and /zone_report). The overlay provides status

information about whether those REST API endpoints are alive and responding.

Figure 9. endpoint-connection

FUTURE WORK

As this is a first look at a new React-based iRODS administrative GUI, there are many features on the roadmap.

Future capabilities will include management functions for the delay queue, tickets, and remote zones. There will

be more monitoring provided for the di↵erent servers and their storage. These may include both up/down status

indicators as well as health checks for some (un-)common cases that cause trouble for administrators.

In the farther future, we hope that ZMT will grow the ability to manage the server configuration directly, including

policy sets and higher order capabilities.

SUMMARY

This paper provides a vision and describes a pre-release of the new iRODS Zone Management Tool (ZMT). Basic

administration of resources, users, and groups is covered while connected to the iRODS C++ REST API. As this

interface gains additional functionality, it will allow other applications to simplify and remove some of their rodsadmin

complexity.
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ABSTRACT

Metalnx 2.4.0 includes a new view when browsing iRODS Collections. This view displays thumbnails for images

within a  particular  Collection.  This  talk will  describe  the process  of  adding this  view to the client  as  well  as

explaining the server-side rule that provides the thumbnail information.
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