
iRODS as an Object Store for the 
Galaxy Platform

Kaivan Kamali, Nate Coraor, Marius van den Beek, John Chilton, Anton Nekrutenko

Penn State University



What is Galaxy?

■ https://galaxyproject.org/

■ Computational workbench used by thousands of scientists across the world to analyze large 
heterogeneous datasets, e.g., bioinformatics, chemistry, ecology, climate science, images [1]

■ Easy to use [2, 3]

– GUI based. No programming skills required

– Web based. No system administration skills required

■ Free and Open Source

■ Many tools (~8000)

■ Popular (>10.000 citations)

■ Extensive tutorials available via Galaxy Training Network (GTN)

https://galaxyproject.org/


Galaxy Interface



Reproducible Research w/ Workflows



Transparency

■ Galaxy Lets you share your histories, workflows, etc., enabling transparent research

■ Sharing options

– Share with specific users

– Share via link, with anyone who knows the link

– Publish to make it visible to everybody



Uploading Data

■ Galaxy supports data imports from 

– The user's computer,

– By URL,

– And, directly from many online resources, e.g., UCSC, NCBI, etc.

■ Galaxy supports a range data formats, and translation between those formats

■ The Galaxy servers provide substantial CPU and disk space

– On usegalaxy.org, the median size of the datasets created by all users per day 
is 8.12 TB.



Uploaded File



Run a Sort Tool



Output File



Data Visualization in Galaxy



Galaxy Servers



Galaxy Training Network (GTN)

■ Collection of tutorials developed & maintained by the worldwide Galaxy community

■ Tutorials for scientists, developers, and admins

■ Tutorials have slides, hands on section, datasets, workflows, and videos



Galaxy ObjectStore

■ ObjectStore is Galaxy's data virtualization technology

– Abstracts Galaxy's business logic for data persistence technology and topology

– Makes it possible to store data on a wide-variety of persistence media, and 
define any data distribution policy

■ Local storage, cloud-based solutions, etc.

■ Enables Galaxy admins to add additional persistence media to existing file system

– Expanding a mounted filesystem (e.g., when it runs out of space) 
w/o moving data

– Enables replicating data onto multiple persistence media

■ Data access fault-tolerance



Galaxy Backend

■ Backend: any persistence media that ObjectStore can be configured to 

read/write from/to

■ List of backends that ObjectStore currently supports:

– Local storage (e.g., disk)

– Network attached storage (NAS)

– Cloud (e.g. S3)

– Integrated Rule-Oriented Data Store (iRODS)



Data Distribution

■ When you have multiple backends, can define nested relationship between them

– Hierarchical backends

– Distributed backends



Data Distribution

■ Hierarchical

– Useful when you have been using a backend for a while

– Then decide to "extend" it by adding a new backend

– But without having to move data from previous backend to the new backend

■ Distributed

– Randomly selects a backend to which it should persist data

– The random selection is based on admin-specified weights for backends



Galaxy's iRODS ObjectStore

■ iRODS parameters are specified in an ObjectStore XML configuration file



iRODS ObjectStore Instatiation

■ Galaxy reads/parses object store XML configuration file

■ Instantiates an iRODS ObjectStore class

■ iRODS ObjectStore class provides various methods

– create/get/delete a file

– get_file_name, get_file_size, get_file_path

– is_file_empty, does_file_exists, is_file_in_cache

– Etc.

■ iRODS ObjectStore class uses Python iRODS Client to interact with iRODS server



Galaxy w/ iRODS Support to Test Server

■ We implemented iRODS ObjectStore class

■ Wrote unit/integration tests

■ Had the PR reviewed/merged

■ Configured Galaxy to use iRODS server

– Hosted on Texas Advanced Computing Center (TACC)

■ Deployed Galaxy server w/ iRODS support to our Test server

– test.galaxyproject.org



First Challenge

■ Galaxy creates and maintains a Python iRODS client Session object upon startup

– Session object maintains a pool of connections

– Saw occasional NetworkException errors in the Galaxy log

– Seemed older connections would get dropped

■ Initial solution

– Per discussions on iRODS-Chat (https://groups.google.com/g/iROD-Chat) created a 
Session object for each interaction with iRODS

■ The NetworkException errors disappeared

– However, creating a Session object for each interaction with iRODS was not 
performant

■ Creating/destroying thousands of iRODS Session objects was costly

https://groups.google.com/g/iROD-Chat)


First Challenge -- Continued

■ Subsequent solution

– Maintain the session object

■ Do not create/destroy the session object for each iRODS interaction

– Record connection creation time for each connection in the Pool

– When interacting with iRODS, if the connection was created more than N
seconds ago (N configurable, default value is 300 seconds), recreate the 
connection

■ Otherwise, use the connection as is

– This resulted in NetworkException errors disappearing 

– And, the solution is also performant



Second Challenge

■ Python iRODS client's Post and Get methods were not performant

– Slowed down Galaxy Post/Get operations

– Specially for larger files

■ The client's Post/Get runtime was much slower than iCommands equivalent

■ Proposed solution

– Discussed supporting multi-threaded Post/Get on the client side only

■ Eventually decided to scrap client only solution

– Decided on multi-threaded Post/Get support on both client AND server sides

■ Python iRODS client: v0.9.0+

■ iRODS server: v4.2.9+

■ Data object transfers using put()/get() will spawn a number of threads to optimize performance

■ File sizes larger than a default threshold value of 32 MB



Python iRODS Client Vs iCommands

■ Wrote scripts that generate M (say, 50) files of size N (say, 100 GB ) with random 
content

■ Post files to iRODS server using both Python iRODS client and iCommands

■ Averaged the runtime of each to compare

■ Get files from iRODS server using both Python iRODS client and iCommands

■ Averaged the runtime of each to compare

■ Repeated the steps above for file sizes 100 bytes, 10 KB, 1 MB, 2.25 MB, 4 MB, 

6.25 MB, 25 MB, 50 MB, 100 MB, and 1 GB



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 10 KB 1 MB 2.25 MB 4 MB 6.25 MB 25 MB 50 MB 100 MB 1 GB

T
im

e
 i

n
 s

e
c
o

n
d

s

File size

POST: icommand vs client

icommand client



0

1

2

3

4

5

6

100 10 KB 1 MB 2.25 MB 4 MB 6.25 MB 25 MB 50 MB 100 MB 1 GB

T
im

e
 i

n
 s

e
c
o

n
d

s

File size

GET: icommand vs client

icommand client



Third Challenge

■ Galaxy server became unresponsive

– Call stack showed it's hung in Python iRODS client code

■ After extensive debugging, found a bug in client code (in _recv_message_in_len())

– The loop that iteratively reads from the socket, depended on the number of 
bytes read each time, to terminate the loop

– If the iRODS server is down, the number of bytes read in each iteration of the 
loop is 0, causing it to loop indefinitely, halting the app

– Revised the logic to account for this scenario

■ Also, found and fixed a bug with Connection destructor

– Memory leak fixed



Current Status

■ Configured/deployed Galaxy with iRODS object store to Main (https://usegalaxy.org)

■ Created a group of users that their object store access is overridden to iRODS

– This is to gradually release iRODS to only a select few

– Testing has been promising with no performance issues

■ After this stage of our testing is complete, we plan to use a distributed object store

– We use weights to split the writes between iRODS and disk

■ Say, start with 1 write to iRODS, for every 9 writes to disk

■ Reads go against both backends, depending on where the data resides

https://usegalaxy.org


Current Status -- Continued

■ We plan to incrementally increase iRODS weights and decrease disk weights

– Say, 10% every month

– Until all writes go to iRODS

■ Again, reads go against both backends, depending on where the data resides

– Can a real-time multi-user application run on top of iRODS?

■ Finally, we plan on migrating the data from disk to iRODS

– Data migration happens via a separate script

– Can then retire disk object store



Thank you!

■ We would like to thank all the members of the iRODS team for their support and 
always being available

– Special thanks to Daniel and Terrell!

■ Questions/Comments?



References

1. Vahid Jalili, et. al. The Galaxy platform for accessible, reproducible and collaborative 
biomedical analyses: 2020 update, Nucleic Acids Research, Volume 48, Issue W1, 
02 July 2020, Pages W395–W402, https://doi.org/10.1093/nar/gkaa434

2. A Short Introduction to Galaxy (https://training.galaxyproject.org/training-
material/topics/introduction/tutorials/galaxy-intro-short/slides.html#1)

3. Introduction to Galaxy. https://training.galaxyproject.org/training-
material/topics/introduction/slides/introduction.html#1

4. Galaxy ObjectStore. https://galaxyproject.org/admin/objectstore/

5. Dockerized iRODS Server. https://github.com/kxk302/irods

https://training.galaxyproject.org/training-material/topics/introduction/tutorials/galaxy-intro-short/slides.html
https://training.galaxyproject.org/training-material/topics/introduction/slides/introduction.html
https://galaxyproject.org/admin/objectstore/

