
iRODS Development and Testing Environments (v8)
Alan King

Renaissance Computing
Institute (RENCI)
UNC Chapel Hill

alanking@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)
UNC Chapel Hill

unc@terrellrussell.com

ABSTRACT

iRODS Build and Test continues to evolve. Testing a distributed system is hard and this paper describes the eighth

generation of our efforts to do it well. This paper includes containers, Python, and no Groovy.

Keywords

iRODS, testing, development, framework, python

INTRODUCTION

The iRODS Build and Test infrastructure has now been around for more than a decade and continues to evolve as

additional features and coverage are required. The iRODS Team has worked to easily and flexibly deploy different

iRODS topologies and efficiently exercise the numerous scenarios that a robust iRODS installation can service.

In addition to writing and maintaining a growing lists of tests, seeing those tests pass builds confidence in the changes

developers make to software, asserting the correctness of the changes and of the entire system.

Providing an easy and consistent framework in which to run these tests, and see their results, builds confidence for

the entire community.

This eighth version (v8) is the best we’ve done so far.

HISTORY

The following listing is an overview of the history of the various Build-and-Test Systems for iRODS. Each shows a

flow of technologies used to provide confidence in iRODS at the time. Over the years, this series of flows also became

the gatekeeper for whether iRODS was ready for a new release.

v1 - July 2011: Python → Node.js → RabbitMQ → Celery → Eucalyptus [1]

v2 - October 2012: Python → Node.js → ssh → OpenStack

v3 - January 2013: Hudson → Python → OpenStack

v4 - October 2013: Hudson → Python → vSphere long-running VMs [2]

v5 - Spring 2015: Jenkins → Python → Ansible → zone bundles → vSphere dynamic VMs [3]

v6 - Spring 2017: Jenkins → Python → vSphere dynamic VMs → build/test hooks [4]

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Authors retain copyright.]

1

v7 - Summer 2019: Docker → Jenkins → Python → Docker → build/test hooks [5]

v8 - Summer 2022: Python → Docker → build/test hooks

LIMITATIONS OF THE PAST

The most recent change to the system is the removal of Jenkins. Jenkins [6], the successor to Hudson, is a java-based

automation and continuous integration server that was very helpful in being the place where ’jobs’ were saved and

managed and run from 2013 to 2022. However, there were a few limitations of that approach that we hoped to

overcome with v8.

First, since the move to a Docker-based, every-developer-runs-their-own-system approach with v7, the requirement

that every developer must now also be an administrator of their own Jenkins became a bit heavyweight and onerous.

Second, the existing structure of Jenkins is pretty inflexible with its notion of jobs and servers and a history of each

job over time. We found that we wanted more granular insight across types of inputs to those jobs, rather than just

by job name itself.

Third, the combinatoric explosion of variables that we would like to test had become too difficult to maintain in

a simple list of Jenkins jobs. If we realized we wanted to test an additional variable, our list of manually defined

and curated jobs (in Groovy!) could multiply by the number of enumerated values of the new variable. This was

unsustainable and we found ourselves considering writing Python wrappers to generate these Groovy jobs.

Additionally, the test results were captured in the Jenkins namespace and were hard to extract in a flexible manner.

Any packages created needed to be extracted and kept in a parallel namespace taking up room in our mental model

and additional disk space on individual developers’ machines.

Lastly, also related to disk space, since every Jenkins job was building things from scratch, we were dealing with a

Docker image explosion - there was one tag per test run in the system - leading to thousands and thousands of nearly

identical images. There were a number of disk full events on the development team which were always surprisingly

tricky and annoying to recover from.

Stepping back, we realized our needs both as developers and project maintainers were not being met satisfactorily

and we needed something better.

iRODS BUILD-AND-TEST SYSTEM (V8)

After a few whiteboard sessions, we determined that we really wanted to separate the building of packages (solving

our Docker image explosion problem) from the running of tests (solving our too-many-Jenkins-jobs problem). We

needed a consistent flow from source code to built packages to test results (see Figure 1).

We also were looking to provide a more consistent learning and development environment for interns and new hires.

This led us to a very straightforward replacement of the initial generic flow with two stages, development and testing.

Each stage is now represented by its own standalone git repository with clean inputs and outputs as seen in Figure 2.

DEVELOPMENT ENVIRONMENT

The new iRODS development environment git repository [7] is designed to provide the machinery to easily build

the iRODS server, its various plugins, and the required external dependencies (externals) for all supported operating

systems as well as a selection of debugging tools. The abstraction layer to provide this on a single machine is through

the use of container technology, currently handled by Docker.

The containers build from code that is local to the host machine and produce local packages on the host machine.

All of the build tools and processes are run within the containers and do not otherwise affect the host environment

2

Figure 1. Generic Build-and-Test Workflow Figure 2. Workflow with Repositories

or filesystem.

The advantages to this approach are numerous when compared to VMs or multiple build machines. First, there is

less network traffic to and from the code repositories (in our case, largely GitHub). Second, local source files allow

the developer to use their preferred coding environment and tooling which increases speed and confidence. Third, the

container-technology’s build cache allows for faster iteration between build and test cycles. Lastly, having a consistent

process means that the development efforts look very similar to the release process - the same machinery that builds

our packages for development and testing is now used to build the packages that are released to everyone else.

An example usage of the iRODS development environment is as follows:

$ docker run --rm \

-v ${irods_sourcedir}:/irods_source:ro \

-v ${irods_builddir}:/irods_build \

-v ${icommands_sourcedir}:/icommands_source:ro \

-v ${icommands_builddir}:/icommands_build \

-v ${irods_packagedir}:/irods_packages \

-v ${externals_packagedir}:/irods_externals_packages:ro \

irods-core-builder:${PLATFORM}-${VERSION}

The above example runs an irods-core-builder for a particular ${PLATFORM} and ${VERSION}. The three read-only

(ro) volume mounts specify the location of the local source code for the iRODS server (${irods_sourcedir}), the

iRODS iCommands (${icommands_sourcedir}), and the external dependency packages already built and gathered

for this platform and version (${externals_packagedir}). The other three volume mounts specify the locations

of two build directories for the build artifacts (${irods_builddir} and ${icommands_builddir}) and the location

where the newly built packages will be deposited (${irods_packagedir}).

TESTING ENVIRONMENT

The new iRODS testing environment git repository [8] is designed to provide the machinery to test various iRODS

configurations. The python scripts currently leverage the functionality of Docker Compose to easily stand up one or

more iRODS zones, configure them, federate them, and then run tests and gather the results. Again, through the use

of container technology this happens on a single host machine.

3

These local scripts execute the issued commands in long-running containers. They install and configure local (newly

built) or released packages and generate local test results. The scripts have options to skip the testing which allows a

developer to quickly have access to a running zone from their latest built packages for manual inspection and testing.

The first advantage of this approach is precision control for running various tests in parallel since multiple independent

containers can run independent zones to avoid any interaction or dependencies. A second related advantage is

that this approach provides a convenient way to reproduce reported issues because of the consistent, reproducible

configurations. This also provides a consistent process for both bench (manual) and automated testing.

The current list of scripts available in the testing repository:

• stand it up.py - stand up a zone with multiple servers

• federate.py - stand up and federate multiple zones

• run core tests.py - run iRODS server tests

• run unit tests.py - run unit tests for iRODS libraries

• run topology tests.py - run tests on a multi-server zone

• run federation tests.py - run tests in federated zones

• run plugin tests.py - run tests for iRODS plugins

An example usage of running the core tests is as follows:

$ python run_core_tests.py \

--project-directory projects/ubuntu-20.04/ubuntu-20.04-postgres-10.12 \

--irods-package-directory ~/hdd/builds/irods_packages/4-3-stable/ubuntu-20.04 \

--concurrent-test-executor-count 4

The above example runs the core test suite with configuration details defined in the --project-directory located in

the relative path of projects/ubuntu-20.04/ubuntu-20.04-postgres-10.12 with the binary packages found in the

--irods-package-directory of ~/hdd/builds/irods_packages/4-3-stable/ubuntu-20.04. The --concurrent-

test-executor-count of 4 instructs the script to stand up four concurrent identical zones, distribute the tests

across those four zones, and run the tests in parallel. As the tests complete, the log files and the test results are

copied back to the host machine. Once all tests are complete, the script stops the four zones and removes the running

containers.

The results of the fourth zone can be seen here:

results for [ubuntu-2004-postgres-1012_irods-catalog-provider_4]

passed tests:

[[30.0808]s] [test_collection_mtime]

[[837.2263]s] [test_iadmin]

[[59.8457]s] [test_ichmod]

[[13.3225]s] [test_ifsck]

[[58.9188]s] [test_ils]

[[8.9275]s] [test_imeta_help]

4

[[34.9601]s] [test_imv]

<snip>

[[28.2190]s] [test_quotas]

[[1081.7692]s] [test_resource_types.Test_Resource_CompoundWithUnivmss]

[[808.2622]s] [test_resource_types.Test_Resource_Passthru]

[[2091.9287]s] [test_resource_types.Test_Resource_Replication]

[[857.6486]s] [test_resource_types.Test_Resource_Unixfilesystem]

[[917.5663]s] [test_rulebase]

[[78.1721]s] [test_symlink_operations]

skipped tests:

failed tests:

return code:[0]

time elapsed: [7.345e+03]seconds ([2]hours [2.424]minutes)

All tests passed! :)

time elapsed: [10955.3559]seconds ([3]hours [2.5893]minutes)

==== end of test run results ====

The logs for this test run can then be found in the reported location:

2022-07-04 20:57:00,726 INFO - collecting logs

[/tmp/ubuntu-2004-postgres-10123x3tjb2r/ubuntu-2004-postgres-1012_be703715-7901-4a34-affa-10ebea651ff4]

FUTURE WORK

The next few steps for the iRODS Build and Test infrastructure are incremental. The container-based approach will

probably last for a while and progress will come from a few different areas, including automation, client testing, and

environmental reproduction and orchestration.

Since moving away from Jenkins, the automation of testing every commit has fallen away. Working to reproduce

the visibility of continuous integration is a near-term goal. Some progress has already been made, but it is not clear

whether building this from scratch will be worth the effort.

Adding various iRODS clients to the testing infrastructure is an ongoing effort as well. Most clients do not already

have their own test suites. Command line tools will be easy enough to write tests for, but GUIs will require additional

work.

The original design goal for the iRODS Zone Report was to provide a serialization format for a zone’s topology that

could be generated from an existing deployment as well as be handed to a tool for automatic deployment for testing

and issue reproduction. The format itself has proven useful but needs some modernization work for the 4.3 release

series.

SUMMARY

The eighth generation of the iRODS Build and Test infrastructure provides a cleaner slate for the iRODS Consortium

to build confidence and visibility around the core iRODS server and its plugins. It has already increased iteration

speed for the development team and can guarantee any released binaries come from the same machinery that shows

all the tests are passing.

5

REFERENCES

[1] Russell, T., Coposky, J., Brieger, L., Stealey, M.: Initial Enterprise iRODS Release. 2012 iRODS User Group

Meeting (2012). https://irods.org/uploads/2012/03/Russell-RENCI-EiRODS.pdf

[2] Russell T.: iRODS 4.0 - Build and Test. 2014 iRODS User Group Meeting (2014).

https://irods.org/uploads/2014/06/Terrell-iRODS-4.0-BuildAndTest.pdf

[3] Russell T., Keller, B.: iRODS Cloud Infrastructure and Testing Framework. 2015 iRODS User Group Meeting

(2015). https://irods.org/uploads/2015/06/RussellKeller-TestingFramework.pdf

[4] Russell, T., Gill, J.: iRODS Build and Test (part of the iRODS Technology Update). 2018 iRODS User Group

Meeting (2018). https://irods.org/uploads/2018/Russell-iRODS-Technology_Update-slides.pdf

[5] Russell, T., Gill, J.: iRODS Build and Test (part of the iRODS Technology Update). 2019 iRODS User Group

Meeting (2019). https://irods.org/uploads/2019/Russell-iRODS-UGM2019_Technology_Update-slides.pdf

[6] Jenkins. https://www.jenkins.io

[7] iRODS Development Environment. https://github.com/irods/irods_development_environment

[8] iRODS Testing Environment. https://github.com/irods/irods_testing_environment

6

