
Build and Packaging UpdateBuild and Packaging Update

Markus Kitsinger
github.com/SwooshyCueb
Software Developer, iRODS Consortium

July 5-8, 2022
iRODS User Group Meeting 2022

Leuven, Belgium
1

External dependencies

External dependency packaging

iRODS Buildsystem

Compiler and C++ Standard Library

Dependency management

iRODS packaging

Areas of Interest

2

Current state of affairs, rationale, and caveats

Externals

libc++

Packaging

The new approach

All the friends we'll meet along the way

Brief Overview

3

External dependencies packaged with fpm

iRODS built with CMake and packaged with CPack

Everything is built with clang and libc++ that we provide

Two flavors of packages supported: dpkg (deb) and rpm

The Current State of Affairs - Overview

4

What

A set of separately packaged dependencies

Not our code

Live in /opt/irods-externals (by default)

Why

Distributions do not have all our dependencies in their package repositories

Distributions tend to have older versions of our dependencies

https://github.com/irods/externals

The Current State of Affairs - Externals

5

https://github.com/irods/externals

Externals are not well-integrated into system

Currently not set up to provide different sets of externals for different distros

Current iRODS buildsystem relies pretty heavily on how our externals are packaged

More on this later...

The Current State of Affairs - Externals - Caveats

6

What

iRODS and most of our externals are built with clang

All C++ built against libc++

Using clang and libc++ from our externals

Why
Newer clang and newer libc++ than is in distribution repositories

Much of our code is not gcc-friendly

At one point, clang/libc++ adopted new features faster than gcc/libstdc++

The Current State of Affairs - libc++

7

The Current State of Affairs - libc++ - Caveats

Mixing binaries built against libc++ and libstdc++ is problematic

Distro-provided packages generally use libstdc++

Increases the number of externals we must provide

Makes building against iRODS more complicated

8

What
iRODS built using CMake and packaged with CPack

Buildsystem does a lot of platform-specific heavy lifting
Most packaging defined in CMake
File/directory ownership handled programmatically with postinst scripts
Libraries in /usr/lib, regardless of what the distro expects

Externals packaged with fpm

Why
CPack and fpm are one-size-fits-all solutions, easier to wield than dpkg-buildpackage
and rpmbuild

The approach at the time was lazy-but-sufficient

The Current State of Affairs - Packaging

9

The Current State of Affairs - Packaging - Caveats

Cannot provide debian or rpm source packages

Service account shenanigans

More on this later

Using system-provided dependencies in lieu of externals we provide is tricky

May require buildsystem changes

No package linting

No "start from zero" package builds (no pbuilder)

More on next slide...
10

"Lazy but Sufficient" is Neither

We need to provide and source packages

Service account hot-potato means no systemd unit files

CMake has to know a lot about the target distros to produce usable packages

All dependencies must be specified manually (no)

Adding support for another distro requires more work and a new release

Likewise for a new version of an already supported distro

We want to reduce the number of externals packages we provide

No

debian rpm

dpkg-shlibdeps

automated symbol tracking

11

https://www.debian.org/doc/debian-policy/ch-source.html
http://ftp.rpm.org/max-rpm/s1-rpm-miscellania-srpms.html
https://manpages.debian.org/bullseye/dpkg-dev/dpkg-shlibdeps.1.en.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system

The Future of iRODS Build and Packaging: "Normal and Boring"

We will shift to using the standard tools (and) for
packaging

 will be used to maintain debian packages, -style
Possibly rpm packages as well, still investigating

We will not provide an externals package if the distribution already provides a usable package
Debian and rpm source packages will be provided in our repositories
We will follow established patterns for setting up service accounts
We will install our libraries in the normal locations
We will provide default systemd unit(s)

We will build against libstdc++

We will decouple the iRODS buildsystem from externals packaging implementation
details

dpkg-buildpackage rpmbuild

git-buildpackage Salsa

12

https://manpages.debian.org/bullseye/dpkg-dev/dpkg-buildpackage.1.en.html
http://ftp.rpm.org/max-rpm/ch-rpm-b-command.html
https://wiki.debian.org/PackagingWithGit
https://salsa.debian.org/

Clearing Hurdles and Shaving Yaks

I am still familiarizing myself with rpmbuild and friends. Most of my packaging
experience is with dpkg, , and .

New workflow and instrumentation for building packages.
Separate workflows for "from zero" builds and routine development builds.

Service account hot-potato is actually part of a larger issue that must be solved with
care as part of this transition.

Distros without a new-enough libstdc++ will need a libstdc++ externals package.

We will have to write CMake find modules for non-CMake dependencies that do not
already have them.

We may have to also write CMake find module wrappers to work around bugs and oversights in
the CMake-provided find modules, such as .

This transition cannot be easily broken up into stages.

PKGBUILD Wix

FindODBC.cmake

13

https://wiki.archlinux.org/title/PKGBUILD
https://wixtoolset.org/
https://cmake.org/cmake/help/v3.12/module/FindODBC.html#limitations

Timeline (or lack thereof)

We don't know.

Yak shaving

Known unknowns

We may have a better idea of the time table at the next UGM.

14

Questions?

15

