RODS.

Build and Packaging Update

Markus Kitsinger July 5-8, 2022
github.com/SwooshyCueb IRODS User Group Meeting 2022
Software Developer, iRODS Consortium Leuven, Belgium




Areas of Interest RODS

e External dependencies
e External dependency packaging

e {RODS Buildsystem
= Compiler and C++ Standard Library

= Dependency management

e {RODS packaging



Brief Overview RODS

e Current state of affairs, rationale, and caveats
m Externals
m libc++

= Packaging
e The new approach

e All the friends we'll meet along the way



The Current State of Affairs - Overview _RODS

e External dependencies packaged with fpm
e {RODS built with CMake and packaged with CPack
e Everything is built with clang and libc++ that we provide

e Two flavors of packages supported: dpkg (deb) and rpm



The Current State of Affairs - Externals _RODS

What
e A set of separately packaged dependencies
e Not our code
e Livein /opt/irods-externals (by default)

e https://github.com/irods/externals

Why
e Distributions do not have all our dependencies in their package repositories

e Distributions tend to have older versions of our dependencies


https://github.com/irods/externals

The Current State of Affairs - Externals - Caveats _RODS

e Externals are not well-integrated into system

e Currently not set up to provide different sets of externals for different distros

e Current iRODS buildsystem relies pretty heavily on how our externals are packaged

More on this later...



The Current State of Affairs - 1ibc++ _RODS

What

¢ iRODS and most of our externals are built with clang
e All C++ built against libc++

e Using clang and libc++ from our externals

Why

e Newer clang and newer libc++ than is in distribution repositories
e Much of our code is not gcc-friendly

e At one point, clang/libc++ adopted new features faster than gcc/libstdc++



The Current State of Affairs - 1ibc++ - Caveats _RODS

e Mixing binaries built against 1ibc++ and libstdc++ is problematic

e Distro-provided packages generally use libstdc++

* |ncreases the number of externals we must provide

e Makes building against iRODS more complicated



The Current State of Affairs - Packaging _RODS

What

e {RODS built using CMake and packaged with CPack
= Buildsystem does a lot of platform-specific heavy lifting
= Most packaging defined in CMake
= File/directory ownership handled programmatically with postinst scripts
= |ibrariesin /usr/1lib, regardless of what the distro expects

e Externals packaged with fpm

Why

e CPack and fpm are one-size-fits-all solutions, easier to wield than dpkg-buildpackage
and rpmbuild

e The approach at the time was lazy-but-sufficient



The Current State of Affairs - Packaging - Caveats _RODS

e Cannot provide debian or rpm source packages

e Service account shenanigans

= More on this later

e Using system-provided dependencies in lieu of externals we provide is tricky

= May require buildsystem changes
e No package linting

e No "start from zero" package builds (no pbuilder)

More on next slide...

10



"Lazy but Sufficient" is Neither RODS

We need to provide debian and rpm source packages
Service account hot-potato means no systemd unit files

CMake has to know a lot about the target distros to produce usable packages

= All dependencies must be specified manually (no dpkg-shlibdeps)

Adding support for another distro requires more work and a new release

= | ikewise for a new version of an already supported distro

We want to reduce the number of externals packages we provide

No automated symbol tracking

11


https://www.debian.org/doc/debian-policy/ch-source.html
http://ftp.rpm.org/max-rpm/s1-rpm-miscellania-srpms.html
https://manpages.debian.org/bullseye/dpkg-dev/dpkg-shlibdeps.1.en.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system

The Future of iRODS Build and Packaging: "Normal and Boring" RODS

e We will shift to using the standard tools (dpkg-buildpackage and rpmbuild) for
packaging

" git-buildpackage will be used to maintain debian packages, Salsa-style
o Possibly rpom packages as well, still investigating

= We will not provide an externals package if the distribution already provides a usable package
= Debian and rpm source packages will be provided in our repositories

We will follow established patterns for setting up service accounts
= We will install our libraries in the normal locations
= We will provide default systemd unit(s)

e We will build against libstdc++

e We will decouple the iRODS buildsystem from externals packaging implementation
details

12


https://manpages.debian.org/bullseye/dpkg-dev/dpkg-buildpackage.1.en.html
http://ftp.rpm.org/max-rpm/ch-rpm-b-command.html
https://wiki.debian.org/PackagingWithGit
https://salsa.debian.org/

Clearing Hurdles and Shaving Yaks _RODS

e | am still familiarizing myself with rpmbuild and friends. Most of my packaging
experience is with dpkg, PKGBUILD, and Wix.

e New workflow and instrumentation for building packages.
= Separate workflows for "from zero" builds and routine development builds.

e Service account hot-potato is actually part of a larger issue that must be solved with
care as part of this transition.

e Distros without a new-enough libstdc++ will need a 1ibstdc++ externals package.

e We will have to write CMake find modules for non-CMake dependencies that do not

already have them.

= \We may have to also write CMake find module wrappers to work around bugs and oversights in
the CMake-provided find modules, such as FindODBC. cmake.

e This transition cannot be easily broken up into stages.

13


https://wiki.archlinux.org/title/PKGBUILD
https://wixtoolset.org/
https://cmake.org/cmake/help/v3.12/module/FindODBC.html#limitations

Timeline (or lack thereof)

We don't know.

e Yak shaving

e Known unknowns

We may have a better idea of the time table at the next UGM.

RODS

14



Questions?

RODS

15



