
Can Blockchain Technology Play a

Role in iRODS?
Arcot (Raja) Rajasekar

rajasekar@unc.edu

The University of North Carolina

at Chapel Hill

Outline

• Block Chain Technology

• Related Functionalities in iRODS

• Looking Ahead:

– Applying Block Chain Technology in iRODS

• Q&A

Block Chain Technology
What is Block Chain Technology?

• BCT, at its core, is a distributed transaction recording system
with no centralized control.
– View it as a distributed storage for digital assets
– In a sense similar to iRODS

• It’s a digital ledger which provides some important
functionalities:
– Tamper proof (Immutability)
– Anybody can see the data but cannot corrupt it
– Decentralized Governance
– Highly secure
– Provenance (time-stamping)
– Digital Signatures for Ownership
– Anonymity (if needed)
– Programmable (ala triggers)

From https://www.cyberbahnit.com/

Applications of BCT
• Crypto-currencies

– the most known application of BCT (e.g. BitCoins)

– Distributed Ledger for holding and verifying transactions
• New mined coins or transfers of old coins

• Miners are also verifiers (needs verifiers)

– Broadcast of transactions (contracts) across a P2P network

– Validation using ‘known’ cryptographic algorithms

– Multiple verifiers – consensus (helps integrity) (rewards)

– Verified transactions added to blocks, chained, timestamped,
encrypted and distributed – makes it immutable

– Concept of Wallet: Public key and Private key combination
• Used as a validation of a user

• Digital signature

• Anonymity – But can be stolen

From https://www.reuters.com/

Other Applications of BCT

• Secure sharing of documents
– Medical, financial, …

• NFT (non-fungible tokens)

• Supply chain and logistics monitoring

• Real estate transaction processing

• Voting

• Money transfers using Cryptocurrencies

• Security for Real-time IoT operations

• Government operations (replacing databases)

• Royalties and Patents

Internals of Block Chain Technology
• Nodes

– Maintain copies of transactions or hash value of
transaction

• Ledger
– database
– Three types

• Public Ledger
• Distributed Ledge
• Decentralized ledger

• Nonce
– stands for “number only used once”
– a unique random 32-bit a number added to a hashed or

encrypted block in a blockchain.
• Hash

– data is mapped to a fixed size using hashing
– hash value of one transaction is the input of another

transaction
• Triggers
• Wallet (client side)

– Public Key Private Key
– Authentication
– Balance – in case of crypto currency

From: https://sciencenotes.org/
steps-scientific-method/

Internals of iRODS technology
• You all should know what they are?

From: https://sciencenotes.org/
steps-scientific-method/

iRODS and BCT

• Distributed Nodes

• Ledger

• Transactions

• Verification

• Triggers

• Wallet

• Blocks

• Hash and Chaining

• Ledger distribution

• Distributed Resources

• Metadata Catalog

• Audit Trail & Server Log

• Access Control

• Rules

• Users

• Data & Collection

• Replication

Example Observability Systems
• DataStax

• Grafna Dashboard

Example Observability Systems

 Apache Skywalker

Open Telemetry 

Three Pillars of Observability

• Logging: collects information about events happening in the system
and helps find unexpected behavior

• Tracing: collects information to create an end-to-end view of how
transactions are executed in a distributed system. Tracing can
recognize a problem through comparing and contrasting.

• Metrics: provide a real-time indication of how the system is
running. Metrics can be leveraged to build alerts, allowing proactive
reaction to unexpected values From: https://www.humio.com/

Two More Pillars:
Visualization: Visual Cues
for abnormalities
Analytics: Deep analytics to
predict faults, failures and
service degradation

Journey: A User Experience
• Tracings create an end-to-end view of how transactions are

executed in a distributed system. They also capture end-to-
end and inter-service latencies of individual calls in a
distributed journey

• Journey: The sum total of all activities a user performs
during a session. A journey can have multiple sub-journeys.
Each journey can be made of several paths which can be
parallel in a distributed system.

• A journey captures timings, possibly call and return
expressions, status code and anything else that an Observer
deems to be necessary.

• Journey can be abstracted into templates and help find
bottlenecks and errors so they can be fixed and optimized.

From: https://www. newrelic.com/

Observability in iRODS: Current Status

• Server Logs: collects information about system events and error
messages happening in the system. Can be used to find unexpected
behavior (distributed)

• Audit Trails: collects user-defined information on triggered action.
Can be used to recreate traces that are executed across distributed
iRODS servers (centralized).

• Status Metadata: Can store persistent information that can help for
further metrics (centralized)

iRODS is currently
supportive more
towards Monitoring
activities than towards
Observability.

From: https://ish-ar.io/observability/

Observability in iRODS

• Towards better performance with proactive
metrics & analysis:

– Help iRODS become better and more
pro-active in maintaining performance

– Help systems that use iRODS to apply
iRODS observability metrics to become
better and pro-active in maintaining
performance

• Server Logs, Audit Trails and Status
Metadata in iRODS provide a strong and
stable foundation for performing
Observability.

• Use of policies, rules and microservices
provide one more level for gaining
information to perform observability

• Missing: Metrics, Journeys, Visualization and
Analytics

iRODS Observability: Metrics
• Application Performance Monitoring (APM): To check whether the system

satisfies the SLA contracts, meets performance standards, identify bugs and
potential issues, and provide flawless user experiences via close monitoring of IT
resources.

• Reduce MTTR (Mean Time To Resolution)

• Continuous Monitoring towards Proactive Remediation

• Alerts and Simple Analysis

• Metrics: What can we monitor in iRODS (not a comprehensive list)
• CPU/Memory Usage
• Network Traffic
• Database Load
• Error Types/Rates
• Request rates
• Response times (mean, max, min)
• Bandwidth/Throughput

• Concurrent Connections
• Number of instances/threads
• Microservice/function usage/time

• Uptime, Restarts & Availability
• User Experience (happy faces)
• Other Software KPIs

iRODS Observability: Journeys
• Distributed Tracing (DT): Chaining of services and peer-to-peer

connections across distributed systems makes it hard to trace the
activities of a session but is critical for performance monitoring.

• DT helps identify bottlenecks across dynamic and heterogenous
infrastructures

• Journeys: Session level performance analysis and monitoring
– Distributed Transaction Monitoring and Analysis
– Create User or Application Profiles
– Define Patterns and Templates of Journeys and Sub-journeys
– Latency optimization
– Failure Models – Alternate Pathways
– Service Dependency Analysis
– Critical Path Analysis
– Root Cause Analysis

iRODS Observability: Analytics
• Predictive Analytics: What is likely to happen?
• Descriptive & Diagnostic Analytics: What happened and why it

happened?
• Prescriptive Analytics: How can we avoid that happening?

Some Examples

• Statistical Analytics: Analyze metrics data for informative nuggets. Max,
Min, Median, Mean, StdDev, etc. provide insights. Can be used to define
norms, SLAs and expected outcomes and latencies

• Graph Analytics: Use traces and journeys to find patterns. Pattern
analysis. Critical nodes and Most used nodes. Candidates for
improvements. Pre-staging and pre-processing options.

• Text Analytics: Contextual data of journey to define dynamic slicing and
define repeatable experiences.

• Machine Learning: Learn good and bad patterns. Successful journeys and
failed journeys.

• …

From: https://www.oreilly.com/

iRODS Observability: Visualization

From: https://www.oreilly.com/

A System Administrator’s Dream

iRODS and Observability
• Observability is becoming important because of complexities of the applications as well

as need for high availability and throughput by the user community

• Observability can be used as a means to monitor the system continuously and, if
possible, correct them on the fly

• Observability can also provide insight to developers on how performance can be
improved

• Observability in iRODS
– Multiple assets already available in iRODS: server logs, audit trails, metadata

– Other assets we haven’t leveraged yet: policies, rules, micro-services

• There is a clear need for Observability in iRODS
– Metrics can be improved

– Journeys can help in making user experience better

– Analytics can help find problems before they occur

– Visualization can help developers and administrators with visual cues and human analytics

• Good idea to think about when we already do enterprise level applications

Observability & iRODS

Q & A
rajasekar@unc.edu

