
Programmable authentication workflows in iRODS
Stefan Wolfsheimer

SURF
Utrecht, The Netherlands
stefan.wolfsheimer@surf.nl

Claudio Cacciari SURF
Utrecht, The Netherlands
claudio.cacciari@surf.nl

Harry Kodden SURF
Utrecht, The Netherlands

harry.kodden@surf.nl

ABSTRACT

iRODS (Integrated Rule-Oriented Data System) [1] supports various authentication methods such as native authen-

tication (username and password), GSI, Kerberos, and OpenID. New authentication methods are implemented as

shared libraries that need to be installed on client and server sides. Client libraries such as python-irodsclient may

need to be patched to support any new authentication protocol.

A universal implementation that supports all authentication flows is clearly favored over managing combinations

of client and server libraries and flows. The PAM (Pluggable Authentication Module) [2] mechanism is a way

to implement and customize authentication flows on the server without needing to adjust the software that uses

this mechanism. Existing PAM libraries may be combined to implement flows featuring branches, multiple-factor

authentication, and much more. The PAM mechanism is already supported by iRODS but the current version of

the plugin is restricted to the standard flow only (username and password). We have implemented an authentication

plugin for iRODS 4.3.0 ”pam_interactive” that enables the flexibility of fully-fledged PAM authentication flows

beyond the standard case.

SURF, the Dutch cooperative association of educational and research institutions, will use that implementation to offer

new features to iRODS users. Two scenarios are especially relevant: the support of the SURF Access Management

Provider (SRAM), which allows multiple Identity Providers to authenticate a user with iRODS, and the support of

Multi-Factor Authentication (MFA) directly at iRODS level, which is often required for sensitive data management.

Keywords

PAM stack, authentication, plugin, OIDC.

INTRODUCTION

Linux-PAM [2] is a mechanism that aims at standardizing user authentication workflows. The mechanism is flex-

ible such that it is possible to support a number of different authentication methods and combinations of them.

PAM supports four management groups: account management, authentication, password management, and session

management. The scope of this paper and the implemented iRODS plugin is the authentication flow only. The

present paper is a follow-up of the work described in a paper presented at UGM 2019 [6], where a similar approach

was adopted. In the previous implementation, the complexity of the flow was encapsulated by an additional web

component required in front of the iRODS Catalog Provider which increased the overhead and limits the flexibility.

System administrators can mix and match from a variety of PAM-modules to implement authentication flows of

arbitrary complexity [3]. PAM-modules are layered on a stack which is processed from top to bottom. Finally, a

status is returned indicating the success or failure of the authentication flow. Each module itself returns a status

code. A control value, which is assigned to each layer, indicates a criterion of how status codes are to be handled. For

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Copyright 2022, SURF b.v.]

1

example, if a module with control value sufficient returns status code success, the stack terminates with success

(state ”authenticated”). While a failed module assigned required causes the whole flow to fail.

PAM-Modules are shared libraries that bridge the communication between directory services, user databases, flat

files, etc. with the PAM framework [4].

In order to enable applications with PAM, application developers need to implement the user-facing parts of the

authentication flow (e.g., retrieving login information from the user) and delegate the flow control to the PAM

library [5]. This approach is described below in the PAM flows sections. In the section Usage, we discuss a few

configuration patterns and examples using the flexible pam_python module.

IMPLEMENTATION

PAM flows

The authentication procedure of a PAM-enabled application is controlled by the PAM library. The process can be

seen as a state machine defined by the PAM configuration. The user interaction is realized by callback functions

that are passed from the application to the PAM library. The function is called on each transition that requires user

interaction (e.g. querying users’ credentials, printing a message on the screen, etc.). The PAM architecture with each

component is shown in Figure 1.

LDAP

Database

Application

authentication

promptEchoOff

promptEchoOn

errorMsg

textInfo

PAM library

pam_authenticate

pam configuration

pam_modules

pam_db.so

pam_ldap.so

pam_<webserver>.so

WebService

Application developer

System administrator

Module developer

Figure 1. PAM configuration: PAM enabled application, PAM library, PAM stack configuration, PAM modules,

and services

PAM flows over the network

Enabling applications with PAM is straightforward when all components, the PAM library, the PAM configuration,

and the application are installed on the same host. The situation is more complicated for client-server systems such

as iRODS. In this case, the PAM library and the configuration are installed on the server, while the user interaction is

realized on the client-side. This implies that the callback functions invoked by the PAM library need to wait for user

2

input on another host during their lifetimes. On the other hand, the iRODS API is implemented as a request-response

model, where the client drives the communication between the components by requesting resources from the server.

A callback to the client from the server is not directly supported in such protocols.

Running

Ready

Waiting WaitingPw

Next ResponseAuthenticated NotAuthenticated User

Figure 2. State diagram of the PAM flow

To overcome this limitation we have designed the PAM workflow as a state machine (see Figure 2). The conversation

is triggered by a user wanting to login to iRODS (e.g. using iinit). The initial state is Running which is immen-

diatly turned to Ready. A transition from Ready to one of the states Waiting, WaitingPw, Next, Authenticated or

NotAuthenticated is driven by the PAM configuration. As suggested by the names, the states Authenticated and

NotAuthenticated refer to the final states of successful and unsuccessful authentication, respectively. The transition

from Ready to next Next is silent or accompanied by a message that is printed on the screen of the client. After the

transition from Ready to Waiting or WaitingPw a message is printed and the user is expected to type a response.

The transition from Waiting and WaitingPw to Response is triggered by the client after the user has provided the

response. The transition from Next to Ready is triggered by the client to indicate the readiness for another iteration.

The transitions triggered by the client are indicated as dashed lines. Since those transitions depend on user input, the

callback functions cannot simply return a value back to the PAM library. Instead, instances of the functions remain

idle waiting for a response from the client. Technically, this behavior is implemented by a condition variable that is

active during the lifetime of the callback function.

The sequence diagram in Figure 3 illustrates a simple PAM conversation over the network. There are four components

involved:

• The iRODS client (icommands)

• The iRODS server

• The pam_interactive plugin

• The PAM library.

The blue boxes indicate the lifetimes of the callbacks. Notice that the transition from Waiting to Response will wake

up a condition variable.

USAGE

State persistency

After the user has successfully authenticated using the PAM stack, a temporary password is generated which is

valid for one hour by default. This password is used by icommands to authenticate against the server. After the

expiration period of the password, the PAM authentication is again executed whenever a user invokes a icommands.

The responses of the last conversation are locally cached and repeated. Below, we describe alternative flows.

3

:iRODS server

:pam_interactive

:PAM lib

Waiting

pam_authenticate

cb: promtEchoOn
WAITING,
 "Login:"

"user"

Running

NEXT

cb: promtEchoOff
WAITING,

 "Password"

AUTHENTICATED

"secret"

NEXT

AUTHENTICATEDAUTHENTICATED

auth_client_start

:iRODS client

"user"

"secret"

user

auth_agent_request

auth_agent_response

login >

password>

Ready

Next

WaitingPw

Next

Respone

Respone

Figure 3. State diagram of the PAM flow

The expiration time of the password can be overridden by the user via the time-to-live option (-ttl, in hours) of

iinit. The iRODS server administrator can set the range of valid values for the TTL value in the server configuration

file (/etc/irods/server_config.json):

"plugin_configuration": {

"authentication": {

"pam_interactive" : {

"password_min_time": 3600,

"password_max_time": 7200

}

}

}

Notice that in the current implementation of iRODS, the smallest granularity of the TTL is in hours. The values in

the server configuration are given in seconds to support future versions with smaller granularity.

Prototyping with pam_python

In this section, we discuss the ability of the pam_interactive plugin from the perspective of a PAM module developer

and a PAM system administrator. In order to keep the discussion illustrative and generic, we use the pam_python

[7] module. In contrast to many other modules, this module does not rely on specific backends or user databases.

pam_python is convenient for

4

• implementing prototypes of PAM modules for novel backends

• illustrating PAM flows and

• implementing regression tests

However, the pace of the development is relatively slow. Thus, there is no guarantee that the software will be

supported in the future.

Consider, for example, the following PAM stack (/etc/pam.d/irods), which uses the pam_python.so module with

the required control variable:

auth required pam_python.so /etc/pam.d/simple.py

The user will be successfully authenticated when the pam_sm_authenticate function defined in the python module

returns PAM_SUCCESS. The following implementation mimics the authentication against a simple user database.

USERS_DB={

'ayub': 'pw',
'mara': 'ACtoRPHI',
'noah': 'NgPOWArs'

}

def pam_sm_authenticate(pamh, flags, argv):

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, "login:"))

pwd_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_OFF, "password:"))

login = msg.resp

password = pwd_msg.resp

if login in USERS_DB and password == USERS_DB[login]:

return pamh.PAM_SUCCESS

return pamh.PAM_AUTH_ERR

In a real-life application, the dictionary would be replaced by a user directory, such as LDAP or another database.

Next, we illustrate how one would enable a second factor required to successfully log in. This can be realized by

adding a second required layer on the pam stack

auth required pam_python.so /etc/pam.d/simple.py

auth required pam_python.so /etc/pam.d/2fa.py

Now, both layers are required. The user needs to enter their regular credentials before being asked for a one-time

PIN generated by a key generator. The module of the second layer can be implemented as follows:

def pam_sm_authenticate(pamh, flags, argv):

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, "pin:"))

pin = msg.resp

if pin == "1234":

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

5

According to the implementation, the correct PIN is the fixed value 1234. In real-life applications, this stub should

obviously be replaced by a real validation. Notice that the logic is entirely driven by the backend and controlled by

the systems administrator. In contrast to other iRODS authentication methods, new policies (e.g. enabling a second

factor) can be rolled out without changing the local client configurations and actively supporting users.

Persistent client information

The user responses to the conversation are stored locally in a JSON document next to the scrambled password. They

can be reused as default values when the user logs in again. However, in some cases, this behavior is not desirable. For

example, it does not make sense to store and reuse the values of one-time passwords for second-factor authentications.

On the other hand, some workflows may require storing and retrieving data without user interaction. In order to

address these use cases, we have extended the standard protocol. The server can either send simple messages (as in

the example above), or JSON payloads describing a set of operations. The message has the form of a JSON object

with the following (optional) keys:

• prompt: a message to be printed on the screen,

• default_path: the JSON path to the default value,

• patch: a list of patches to be applied to the locally stored JSON document (The patches are implemented

according to the specification RFC6902 [8, 9]. and

• retrieve: a JSON path to the locally stored JSON node to be sent back to the server

Example 1: prompt and patch

The following example, a modification of the 2fa.py script from the previous section, illustrates the use of the prompt

and patch fields. The PIN is returned but not stored locally because of the absence of the patch field. After successful

authentication, a token is sent to the client and stored locally:

import json

import uuid

def pam_sm_authenticate(pamh, flags, argv):

just prompt, don't save the pin locally

pin = {"prompt": "pin:"}

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(pin)))

pin = msg.resp

if pin == "1234":

token = str(uuid.uuid4())

save token on client, no prompt

patch = {"patch": [{"op": "add",

"path": "/token",

"value": token}]}

msg = pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO,

json.dumps(patch)))

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

6

Example 2: default_path

Notice that it is also possible to query a message from the user and save it locally under a given path. For example,

the following message queries a pin and stores it under the path /pin in the local JSON document. The next time

the PIN is queried, the default value is take from the JSON document under the path /pin.

prompt and save the pin locally

pin = {"prompt": "enter pin:",

"default_path": "/pin",

"patch": [{"op": "add",

"path": "/pin"}]}

Example 3: retrieve

Suppose we have stored the token under the path /token. Then the data can be retrieved with the payload {"re-

trieve": "/token"}. The following pam_python module requests the locally stored token from the client and returns

the result

import json

def pam_sm_authenticate(pamh, flags, argv):

payload = {"retrieve": "/token"}

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(payload)))

token = msg.resp

payload_resp = {"prompt": "token={}".format(token)}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload_resp)))

return pamh.PAM_SUCCESS

This example concludes the fundamental operations that can be applied to the local JSON document. PAM module

developers and/or administrators can make use of them to implement complex flows.

In the following section, we turn to an application that has motivated the need of a flexible authentication flow.

OpenID Connect

Our need to support multi-factor authentication and federated identity management led us to choose the OpenID

Connect protocol, which adds, on top of the OAuth2 authorization protocol, an authentication token that includes

some basic user profile information. The main use case for the OIDC protocol is the authentication of a web application

against an Identity Provider (IdP). But our users want to log in iRODS via the command line. In order to do that

we have adapted one of the OIDC flow, the Authorization Code Flow (defined in OAuth 2.0 RFC 6749, section 4.1,

[10]), as shown in Figure 4.

Clearly, it would not have been possible to implement that flow without the new authentication plugin. In fact,

the user is presented with a challenge (the log in URL) and the server waits for a response. Beyond the Autho-

rization Code Flow, we have added steps 13-15 to map the identity of the user to an iRODS account, using one of

the available attributes, like, for example, the email address. In terms of the PAM python module, the function

pam_sm_authenticate could be written in the way given in the APPENDIX.

When the token is not valid, the authentication simply fails, but it would be possible to use a refresh token to

automatically renew the expired one.

7

Figure 4. OIDC Authorization Code Flow: adapted for the interaction via command line

CONCLUSION

pam_interactive provides a backend-driven programmable and flexible authentication mechanism for iRODS. By

simplified examples, we have illustrated solution patterns for programing multifactor authentication flows and token

management.

The plugin supports a large range of authentication methods and customized flows because the conversation is not

restricted to simple login-password credentials. The capability of storing information locally can be extended in future

releases. One can think of JSON Web Token as a common technique to implement single signed-on in web-based

applications. Adopting this technology to iRODS would improve the interoperability with other systems.

ACKNOWLEDGMENTS

We thank the members of the iRODS Authentication Working Group for the organization of regular meetings and

open discussions. We also thank our colleague Maithili Kalamkar-Stam for critical proofreading on very short notice.

APPENDIX
OIDC authentication example code

def pam_sm_authenticate(pamh, flags, argv):

try:

user = pamh.get_user(None)

except pamh.exception, e:

8

user = None

pamh.conversation(pamh.Message(pamh.PAM_ERROR_MSG, str(e.pam_result)))

if user == None:

return pamh.PAM_USER_UNKNOWN

no_token = True

Check if the user has a token

payload = json.dumps({ "retrieve": "/oauth2_access_token"})

token_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, payload))

if token_msg is not None and len(token_msg.resp.strip()) > 0:

Validate the token

result = validate_token(user, token_msg.resp, INTROSPECT_URL, OIDC_USER_MAP)

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Authentication: {}".format(result)))

if (result.strip() == "Success"):

no_token = False

return pamh.PAM_SUCCESS

else:

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Invalid token: {}".format(result)))

if no_token:

state = uuid.uuid4()

Get the login URL

params = {"response_type": "code",

"client_id": CLIENT_ID,

"redirect_uri": REDIRECT_URI,

"scope": "openid offline_access email eduperson_principal_name"

"state": state}

loginURL = AUTHORIZATION_EP + '?' + urlencode(params)

Copy it to the browser

payload = {"prompt": "Copy the following URL to your web browser:"}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

payload = {"prompt": loginURL}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

Copy back the callback string

request without saving answer locally

payload = {"prompt": "Copy the callback string from your web browser here:"}

callback_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(payload)))

Get a token

token = oidc_get_token(callback_msg.resp, REDIRECT_URI, TOKEN_EP, BASE64CREDS)

Validate the token

result = validate_token(user, token, INTROSPECT_URL, OIDC_USER_MAP)

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Authentication: {}".format(result)))

9

if (result.strip() == "Success"):

save a simple cookie on the client

display an optional message

payload = {"prompt": "the cookie 'oauth2_access_token' has been updated",

"patch": [{"op": "add",

"path": "/oauth2_access_token",

"value": token}]}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

REFERENCES

[1] Integrated Rule-Oriented Data System (iRODS) https://irods.org/

[2] Linux-PAM. http://www.linux-pam.org/ Visited last on 06.24.2022.

[3] Morgan, A.G., Kukuk, T.: The Linux-PAM System Administrators’ Guide, Version 1.1.2, 31. (2010)

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html

[4] Morgan, A.G., Kukuk, T.: The Linux-PAM Module Writers’ Guide

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html Version 1.1.2, 31. (2010)

[5] Morgan, A.G., Kukuk, T.: The Linux-PAM Application Developers’ Guide

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html Version 1.1.2, 31. (2010)

[6] Cacciari, C., Muscianisi G., Carpené, M., D’Antonio, M. and Fiameni G. An authentication solution for iRODS

based on the OpenID Connect protocol, iRODS User Group Meeting Proceedings (2019)

[7] Stuart, R.: pam_python: Write PAM modules in Python http://pam-python.sourceforge.net/ Version

1.0.8-1. (2020)

[8] Lohmann, N. et. al.: JSON for Modern C++ https://json.nlohmann.me/ Version 3.7.3 (2022)

[9] JavaScript Object Notation (JSON) Patch, RFC 6902 https://www.rfc-editor.org/info/rfc6902 (2013)

[10] The OAuth 2.0 Authorization Framework, RFC 6749 (2012) https://www.rfc-editor.org/info/rfc6749

10

