
2 0 22 U s er G ro u p M eet i n g
L E U V E N , B e l g i u m

U S E R G R O U P M E E T I N G
2 0 2 2 P R O C E E D I N G S

P U B L I S H E D B Y T H E i R O D S C O N S O R T I U M

iRODS
User Group Meeting 2022

Proceedings

© 2022 All rights reserved. Each article remains the property of the authors.

2

14TH ANNUAL CONFERENCE SUMMARY

The iRODS User Group Meeting of 2022 gathered together iRODS users, Consortium members, and

staff to discuss iRODS-enabled applications and discoveries, technologies developed around iRODS,

and future development and sustainability of iRODS and the iRODS Consortium.

The in-person and virtual four-day event was held from July 5th to 8th, hosted by KU Leuven in

Leuven, Belgium, with 103 people attending from 10 countries. Attendees and presenters represented

over 80 academic, governmental, and commercial institutions.

3

4

TALKS AND PAPERS

iRODS UGM 2022 Keynote

Research Data Management at KU Leuven: Infrastructure and Services

Leen Van Rentergem – KU Leuven

iRODS Consortium Update

Terrell Russell – iRODS Consortium

iRODS Technology Update

Kory Draughn, Alan King, Daniel Moore – iRODS Consortium

Sustainable and FAIR Data Ecosystem, supporting new insights in Life Sciences …………… 11

Berenice Wulbrecht, Carl Latham, Valerie Morel – ONTOFORCE

From SRB to iRODS: 20 years of data management at the petabyte scale …………..………… 13

Jean-Yves Nief, Yonny Cardenas – CC-IN2P3

MrData: An iRODS Based Human Research Data Management System ………….………… 15

Blake Fitch, Sebastian Müller, Dario Bosch – Max Planck Institute for Biological Cybernetics

Programmable authentication workflows in iRODS …………………………...……………… 27

Stefan Wolfsheimer, Claudio Cacciari, Harry Kodden – SURF

Alan King – iRODS Consortium

5

iRODS as a data backend for the LEXIS workflow orchestration platform ………………… 37

Mohamad Hayek and Stephan Hachinger – Leibniz Supercomputing Centre

Martin Golasowski and Jan Martinovič – IT4Innovations, VŠB – Technical University of Ostrava

Managing high-throughput sequencing and other -omics data with RODEOS and rodeos-ingest

……………………………………………………………………………………………..………… 39

Clemens Messerschmidt, Marten Jäger, Mathias Kuhring, Dieter Beule and Manuel Holtgrewe – Berlin

Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Bioinformatics

Can Blockchain Technology Play a Role in iRODS? …………………………….……………… 41

Arcot Rajasekar – University of North Carolina at Chapel Hill

Data Management Environment at the National Cancer Institute ……………………….…… 43

Sunita Menon, Eran Rosenberg, Yuri Dinh, Zhengwu Lu, Prasad Konka, George Zaki, Udit Sehgal,

Sarada Chintala, Ruth Frost and Eric Stahlberg – Frederick National Laboratory for Cancer Research

iRODS as an Object Store for the Galaxy Platform …………………….…………………… 51

Kaivan Kamali, Nate Coraor, John Chilton, Anton Nekrutenko – Penn State University

Marius van den Beek – Galaxy Project

iRODS speaks SFTP: More ways to securely transfer your data ……………………….…… 53

Illyoung Choi, Edwin Skidmore, Nirav Merchant – CyVerse / University of Arizona

iRODS Delay Server Migration …………………………………………………….…………… 55

Terrell Russell, Kory Draughn – iRODS Consortium

6

Towards the FAIRification of lab-data ……………………………………………….………… 63

Martin Schobben – Utrecht University

iRODS S3 Resource Plugin: Glacier Support …………………………………….…………… 65

Justin James – iRODS Consortium

iRODS and Globus Deployment at the VSC …………………………………………...……… 69

Vas Vasiliadis – University of Chicago

Ingrid Barcena Roig – KU Leuven

An Update on SODAR: the iRODS-powered System for Omics Data Access and Retrieval

……………………………………………………………………………………………….……… 71

Mikko Nieminen, Manuel Holtgrewe, Mathias Kuhring, Oliver Stolpe, Dieter Beule – Berlin Institute

of Health at Charité

iRODS Python/PRC based portal and tools for active data support in research contexts ..… 73

Paul Borgermans – KU Leuven

iRODS Development and Testing Environments (v8) …………………………………….…… 75

Alan King – iRODS Consortium

Data: the final frontier. These are the voyages of the Informatics Digital Solutions team at Sanger.

Its five-year mission: to migrate old data. To seek out new features. To boldly go where no iRODS

Zone has gone before! ……………………………………………..…………..…………...…… 81

John Constable – Wellcome Sanger Institute

iRODS Client Library: Python iRODS Client 1.1.4 ……………………………..…….……… 83

Daniel Moore – iRODS Consortium

7

iRODS Build and Packaging Update ……………………………………………..…...……… 85

Markus Kitsinger – iRODS Consortium

Streamline-connecting data to interactive-apps in CyVerse Discovery Environment via iRODS

CSI Driver ………………………………………………………………………………...… 87

Illyoung Choi, Sarah Roberts, Edwin Skidmore, Nirav Merchant – CyVerse / University of Arizona

8

LIGHTNING TALKS

Customizable metadata @ the Maastricht Data Repository

Daniel Theunissen – Maastricht University

Using Virtual Research Environment (VRE) desktop to sync iRODS data

Ton Smeele – Utrecht University

Upcoming 4.3.? GenQuery

Kory Draughn – iRODS Consortium

Upcoming Hackfest-GA4GH Data Repository Service

Mike Conway – NIH / NIEHS

Planned integration between RSpace and iRODS

Rory Macneil – Research Space

A selection of iRODS prototypes & more

Christine Staiger – Wageningen University

Minimal iRODS Testing Environment Demo

Alan King – iRODS Consortium

Best practices in iRODS System Administration - to Kickstarter!

John Constable – Wellcome Sanger Institute

Dockerized iRODS Server

Kaivan Kamali – Penn State University

9

10

Sustainable and FAIR Data Ecosystem, supporting
new insights in Life Sciences

Berenice Wulbrecht, Carl Latham, Valerie Morel

ONTOFORCE
carl.latham@ontoforce.com

ABSTRACT

The last decade Data has become the new oil, and as a key asset in all industries. However, to leverage the power of

data, it needs to be refined and distributed. This transformation has largely affected the Life Science field from

academy to industry, who has adhered largely to the FAIR principles of findability, accessibility, interoperability,

and reusability. Data is not consumables from an experiment anymore, it is now set to be re-used, re-interpreted…

Some challenges remain like creating a consolidated view of disparate and siloed data or setting the infrastructure to

store, search, retrieve and analyze data.

iRODS stands for ‛Integrated Rule-Oriented Data System’. It is open-source data management software that links

unstructured data to metadata and is used for distributed storage and data management automation.

The knowledge platform, DISQOVER, enables data-driven decisions and accelerates research by unlocking insights

from siloed data. The platform is integrating and harmonizing data silos across internal, public, and third-party

sources into an integrated knowledge graph. DISQOVER helps you do your research in one place to answer

complex questions and solve problems. One consistent and easy-to-use interface democratizes access to data through

self-service knowledge discovery, allowing each scientist to access and explore data and generate insights.

We proposed here the integration of iRODS and Disqover, to offers a sustainable data infrastructure to store and

search for data, knowledge, and insights. The proposal highlights the FAIR data principles. As data and meta-data

captured in various source systems are centralized in iRODS. Data can eventually be processed with an entity

extraction service to further enrich meta-data. Relevant data and meta-data re loaded on the Disqover platform. The

data are integrated and harmonized using various ontologies and reference datasets. Researchers can now very easily

search and explore available data on Disqover and redirect their requests to iRODS to access original data. The

integration of Disqover and iRODS platform provide a self-service data access for research and a sustainable data

ecosystem. Such integration has broad applicability supporting research and development in Life Sciences.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

11

12

From SRB to iRODS: 20 years of data management at
the petabyte scale

Jean-Yves Nief, Yonny Cardenas

CC-IN2P3
nief@cc.in2p3.fr

ABSTRACT

CC-IN2P3 has been using SRB and then iRODS in a wide variety of projects and use cases for the last 20 years.

CC-IN2P3 is a data center hosting services such as computing and data storage for international projects mainly in

the fields of subatomic physics and astrophysics. Data management has always been a key activity for a data center

such as CC-IN2P3, due to the ever growing size of the projects, their international dimension.

This talk will emphasize on the evolution of the data management needs, the pitfalls, the endless migration cycle

(both hardware and software) over the years.

It will also focus on the ongoing prospects, especially the long term data preservation needs and open science.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

13

14

MrData: An iRODS Based Human Research Data
Management System

Blake G. Fitch
Max Planck Institute for
Biological Cybernetics1

blake.fitch@
tuebingen.mpg.de

Sebastian Müller⇤
Max Planck Institute for
Biological Cybernetics1

Eberhard Karls
University Tuebingen2

sebastian.mueller@
tuebingen.mpg.de

Dario Bosch
Max Planck Institute for
Biological Cybernetics1

Eberhard Karls
University Tuebingen2

dario.bosch@
tuebingen.mpg.de

ABSTRACT

MrData is an iRODS based archival system for human subject research producing medical image data. MrData was

designed to automate collection and archival of data flowing from a Siemens 9.4 Tesla MRI system. Of particular

importance to this project was managing metadata related to human subject recruiting in a GDPR compliant manner.

We chose Castellum, a Max Planck developed open source system specifically designed for managing human subject

data securely, and we worked with that team to integrate it with the MrData system. An additional requirement

for us was “mixed use” metadata, that is information necessary for both subject recruiting and scientific processing.

Mixed use metadata, such as handedness, is managed by Castellum but also passed to MrData for scientific and

archival purposes securely, and without manual transcription. Our system never records any personally identifying

information at the MRI scanner, so the resulting image files are never contaminated with a subject name, date of

birth, etc. MrData is based on the iRODS ecosystem, GitLab, Flask, and Python processes, and deployed as a set

of Docker micro-services. We will present an overview of this project, including current production status and future

directions. We welcome feedback on whether some or all of this system would be usefully open-sourced.

Keywords

iRODS, MRI, medical imaging, data management, Python, GDPR, DICOM, Flask, Castellum.

INTRODUCTION

The MrData system was created to automate, and make GDPR (General Data Protection Regulation)[1] compliant,

the handling of human subject medical image data for research at the Max Planck Institute for Biological Cybernetics.

The initial imaging system we focused on is a Siemens 9.4 Tesla MRI system. MrData is built based on the iRODS[2]

ecosystem.

GDPR compliance informed several aspects of the MrData system architecture. Early in the project, we made a

decision to use the Castellum[3] system for human subject recruiting and personal information data management.

The alternative, a system where Personal Health Information (PHI)[4] and Personal Identifiable Information (PII) are

managed by the same system that manages the scientific data archive, has been done in earlier work. Our objective

was a separation of concerns. PHI and PII would be kept in one security domain managed by Castellum, and scientific

information would be kept in another security domain managed by MrData. A challenge was ensuring that mixed

use metadata, needed in both domains, would have a single root source in Castellum but be available for scientific

data archival structure and search.

The MrData system is implemented as a set of micro-services deployed in Docker[5] containers. We use Ansible[6][7]

to build and deploy these containers into production on a bare metal Linux server, as well as into Linux virtual

machines for testing. The containers are a mix of services we developed in-house using Python, and services such as

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium

1
High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

2
Department of Biomedical Magnetic Resonance, Eberhard Karls University Tuebingen, Tuebingen, Germany

1

15

iRODS, Davrods[8], Metalnx[9], and Nginx[10], developed externally. This mix of services is integrated using Docker

infrastructure, managed by Ansible, yielding a single cohesive application deployed on a single server.

The remainder of this paper will be structured as follows: we describe our use of Castellum, management of mixed

use metadata, the workflow a scientist experiences using MrData, the infrastructure environment, review each micro

service component, compare our solution with other options, and conclude with future research directions.

CASTELLUM AND MIXED USE METADATA

Castellum provides a web interface for investigators and administrators to recruit human research subjects. It manages

all relevant personal health information and contact information for subjects in a secure, private fashion. Castellum

also manages additional configurable subject attributes which may be required for a recruiting search. A user of

Castellum first defines a study and then uses Castellum to recruit subjects for that study. A key feature of Castellum

is that each subject in a study is given a unique, randomized pseudonym which is used to refer to that subject in all

research documents and data. Subjects are only referred to using pseudonyms in the MrData archival system.

Figure 1. Mixed use metadata.

A challenge to using separate systems for subject recruiting and scientific data archival is mixed use metadata. Mixed

use metadata is comprised of subject attributes that are required for both recruiting and for scientific data processing.

For MRI related neuroscience, examples of mixed use metadata attributes include handedness, languages spoken, year

of birth. These attributes may be used in Castellum to select subjects for a study and also for using, or reusing,

scientific data. An important requirement is that any given piece of metadata have a single source and that metadata

not be manually transferred between systems. For this reason we worked with the Castellum team to create a one-way

API by which the MrData system can extract mixed use metadata to use in archiving and searching scientific data.

Figure 2. Mixed use metadata moves one-way from Castellum to MrData.

The mixed use metadata must be explicitly authorized for export on an attribute by attribute basis. Only attributes

that are approved by our data security coordinator can be authorized, and only by an administrative action. For

2

16

these attributes, the MrData system keeps a full history, even if a subject is deleted from Castellum or a study is

deactivated. This is done to maintain the ability to access the archived scientific data which we are obligated to do for

a minimum of ten years. It is however possible to remove a given subject from search or user data access as required.

TERMS and DEFINITIONS

This section will review terms and definitions useful in understanding the MrData system.

Study and StudyID

Generally, a study is a project where the scientific investigator will work on a specific research question by running

experiments on a group of subjects. Studies may also be defined for calibration or other projects where we wish

to archive the resulting data but will not have actual human subjects. A study is defined in Castellum where it is

given an StudyID, and may also be given a text descriptor. Castellum can then be used to recruit subjects who will

participate in the study.

Subject and Pseudonym

A subject is a person who is recruited to participate in a study using Castellum. Once a subject is recruited for a study,

that subject will be given a study-specific pseudonym by Castellum. If the subject participates in multiple studies,

the subject will be assigned a di↵erent pseudonym in each study. The pseudonym is a randomized, alphanumeric

character sequence, and is used to represent the subject everywhere outside of Castellum. We do not record the

subject’s name, which is PII, at the MRI scanner as would be traditional in a healthcare context.

Experiment and ExperimentID

An experiment is a single data collection session with a subject who undergoes the protocols of the study. In the

case of the 9.4T MRI scanner, the subject would meet the MRI operator who would perform a scan that might last

a few hours. A scan may produce several types of data that need to be archived. A single subject can participate in

several experiments, in one or more studies.

An experiment is identified by an alphanumeric ExperimentID. This is done using MrData Experiment Registration

web graphical user interface (GUI). At the web page, a StudyID, subject Pseudonym, investigator userid, and type

of experiment, must be entered to acquire an ExperimentID. The ExperimentID is recorded by the MrData system

and provided to the investigator who will need to enter it at the MRI scanner console in the ”Patient Name” field.

Expanded Data

The data types collected by MrData can be expanded beyond the file types produced directly by the scanner. In

the context of an experiment, the scientific investigator can collect arbitrary additional data. Examples are subject

questionnaires, experiment parameters, MRI scanner log files, fMRI stimulus parameters, source code, and freely

formulated experiment descriptions. MrData provides a directory where investigators can deposit any relevant files.

This directory, including its structure, will be archived together with the recorded MRI data to help provide context

for later data processing and analysis. The Expanded Data directory also provides a convenient way to preserve

digital artifacts needed to facilitate reproducibility.

SCIENTIFIC WORKFLOW

The MrData project’s highest objective, after complying with privacy and security requirements, is making the scien-

tific investigator’s workflow as convenient, automated, and understandable as possible. Although greater automation

may be available for a given use-case, we view it as important that the minimal use-case be as simple as possible.

Once the investigator realizes benefit from the minimal use-case, we hope to encourage greater use of coded pipelines,

for example via NextFlow[11], in support of reproducible research.

3

17

The following is a list of the steps an investigator will follow from defining a study through accessing and processing

archived data.

• Use the Castellum web GUI to define a Study and acquire a StudyID.

• Use the Castellum web GUI to recruit Subjects to participate in a Study.

• Use the Castellum web GUI to acquire a Pseudonym for an individual Subject in a Study.

• Use the MrData web GUI to Register an Experiment using the Pseudonym and StudyID, get an ExperimentID.

• At the MRI scanner console, the operator enters their userid and an ExperimentID in the Patient Name field.

• The operator performs the experiment and image data automatically streams into MrData/iRODS.

• The MRI experiment data is then accessed via iRODS (as a network share or via Python API, etc.).

MRDATA SYSTEM

This section will describe the technical details of the MrData system. This includes describing the surrounding

infrastructure that enables MrData, as well as the implementation of core MrData application.

Figure 3. Overview of the MrData environment with core MrData application containers outlined.

Infrastructure Enabling MrData

This section reviews the major pieces of hardware and software infrastructure that enable the MrData system but

which are not part of the core application.

Castellum Deployment

Castellum is deployed in a virtual machine maintained by a system administrator. IT sta↵ maintains the highest

level of administrative control over Castellum, however scientific investigators have several other, more limited ad-

ministrative and functional roles. Castellum is the root source of information for study definition, subject assignment

to studies, and all mixed use metadata. This information is made available to the investigators using the Castellum

web interfaces and to the MrData system via a secure REST[12] API.

4

18

Docker Host

The Docker Host is the server on which all the MrData micro-services are run. The server is a bare-metal install of

Rocky Linux[13] version 8 with Docker and little else installed. This is a single purpose server and only administrator

login is permitted. It mounts an external storage system and has a local 100 terabyte (TB) disk array with a ZFS[14]

filesystem. Users access this system via iRODS and HTTPS network protocols. The server is located in the same

data center as our compute cluster and storage systems. It is connected to a 25 gigabit Ethernet network via a two

port ether-bond. The Docker Host server has the following specs:

Memory: 380GB

Disk: 100TB

lModel name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz

Socket(s): 2

Core(s) per socket: 16

Thread(s) per core: 2

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 22528K

Siemens 9.4 Tesla MRI System

We have focused on a Siemens Magnetom Plus 9.4 Tesla Magnetic Resonance Imaging scanner (Siemens Healthineers,

Erlangen, Germany) running Syngo VE12U software. The 9.4T system produces research data of several types such

as anatomical MRI, functional MRI, and raw MRI data that has not been processed into an image. The system can

produce hundreds of gigabytes in a single session of a few hours.

The 9.4T MRI scanner produces data stored in two file formats, DICOM[15] format for processed images and ”TWIX”,

which is a Siemens proprietary format for ”raw”, unprocessed, k-space MRI data.

The DICOM file format is a standard image data format produced by MRI and other medical imagining systems.

The Siemens 9.4T operating software allows for setting up an automated DICOM export to an SMB network path,

where files will be written to directly after creation. These files are automatically picked up and archived as they are

completed.

TWIX files are not normally accessed in a healthcare environment but are required for some MRI research projects.

Exporting TWIX files from the scanner interferes with any running scan, so automated exports will only be triggered

in the night. However, scanner operators can choose to start an export manually at any time, which can take from

minutes up to an hour, depending on the amount of data recorded. Exporting raw data is performed by using the

RDS tool provided by the Yarra[16] project. The tool automatically determines which files have yet to be exported

and writes them onto a preconfigured network drive. In our case, this is the MrData landing zone defined below.

MrData Landing Zone

The storage where data is stored for import to an archival system is often called a ”landing zone”, or LZ. MrData uses

storage hosted by an IBM Spectrum Scale[17] scalable filesystem, commonly called ”GPFS”, exported via both Server

Message Block (SMB) and Network File System (NFS) protocols. This network file system is used as an LZ for data

written from the Siemens console and from the Yarra RDS software and read by MrData. The Siemens console is a

Windows system which is allowed a narrow network interface to mount the LZ as a SMB share. The Docker Host

mounts the LZ as an NFS share and that mounted filesystem is then made available inside relevant containers as a

Docker volume.

As DICOM, TWIX, and Expanded Data files land in the LZ, they are processed by the 9.4T ”uploaders” implemented

5

19

as Docker containers, one uploader for each type of data. The uploaders locate the ExperimentID in the files, extract

metadata, index archival information, and put the data into the iRODS archive.

MrData Micro-services

In this section we describe each of the micro-services that make up the MrData system in detail. Each service is

deployed as a Docker container. All containers run on a single Docker host.

As mentioned above, we use the Ansible Docker Module to build and start these containers. The reasoning behind

this decision warrants elaboration. We first implemented all MrData services as individual virtual machines (VMs),

built using Ansible. However, we could not realize enough I/O bandwidth using VMs and tests indicated Docker

containers would solve this problem. Since we were targeting a single server environment, Docker Compose[18] seemed

like the right container orchestrator. However, as the Docker Compose version came together, we ran into several

challenges. First, Docker Compose isn’t as flexible as Ansible in configuring the Docker Host, for example ensuring

an NFS filesystem is mounted before starting a container that requires it. Second, Docker Compose needs to run on

the Docker Host or, at least, with remote access the Docker Host’s Docker instance. Ansible more naturally controls

a remote host, Docker or otherwise, with ssh and no remote agent. In summary, Ansible enabled using a single

”infrastructure as code” tool to configure, build, and deploy the MrData production system on a bare-metal server,

while enabling the same capability for test systems in VMs by changing a single file. Ultimately, we are targeting a

fully automated continuous integration environment driven by GitLab[19].

Snapshot of the MrData Docker containers running the Docker Host as a production system.

IMAGE COMMAND CREATED STATUS NAMES

s94t2irods_image_prod "/home/mradmin/mr2ir..." 3 weeks ago Up 3 weeks s94t2irods_EXP_DATA_prod

s94t2irods_image_prod "/home/mradmin/mr2ir..." 3 weeks ago Up 3 weeks s94t2irods_TWIX_prod

s94t2irods_image_prod "/home/mradmin/mr2ir..." 3 weeks ago Up 3 weeks s94t2irods_DICOM_prod

irods_image_prod "/docker-entrypoint...." 2 months ago Up 2 months irods_prod

cast2irods_image_prod "/home/mradmin/cast2..." 3 months ago Up 3 weeks cast2irods_prod

forms_image_prod "/home/mradmin/mrfor..." 3 months ago Up 3 months forms_prod

nginx:latest "/docker-entrypoint...." 4 months ago Up 4 months nginx

davrods_image_prod "/bin/sh -c ’dockeri..." 4 months ago Up 4 months davrods_prod

Castellum to iRODS

The cast2irods service is responsible for fetching exportable Study and Subject metadata from Castellum and making

it available in iRODS for the MrData system. This is required to structure the archive and for scientific data search

and processing. The service also records a history of the exportable metadata in a private, local GitLab repository.

cast2irods periodically polls a Castellum REST API, retrieving the exportable metadata for all subjects in each active

study. This metadata is then organized into a canonical directory structure. The metadata is stored in this directory

as YAML[20] files with key value pairs in sorted order. This directory is git di↵’d with a reference repository cloned

from our local GitLab. The resulting di↵s represent changes in the metadata in Castellum relative to what MrData

has recorded already. The di↵s are merged into the cloned git repository with the exception that we do not delete

files so basic archival information about deactivated studies remains available. This allows the git repository to track

all exportable metadata and it’s history. The modified version of the repository is then committed and pushed to

GitLab. These di↵s are also used to store the same information in iRODS for use by MrData services such as those

that upload and archive data. When a study becomes inactive, its data is no longer exported by Castellum and there

will be no further modifications to the corresponding files in GitLab or iRODS.

MrData Forms

The MrData forms service is a small Python Flask[21] application responsible for presenting a web GUI to scientific

sta↵ enabling them to register experiments. An experiment is a single session on a scanner with a single subject and

6

20

may last from tens of minutes to a few hours. A registered experiment is given an ExperimentID.

Figure 4. MrData Experiment Registration web page (left) and Confirmation web page (right).

To register an experiment and acquire an ExperimentID, one enters a Castellum StudyID, a Castellum Subject

Pseudonym, and a userid into the web GUI. There are drop down tabs to select what kind of experiment will be done,

which scanner will be used, etc. Once this input is validated, the Flask application returns a response page with

an alphanumeric ExperimentID of 9 characters. The ExperimentID is encoded to enable detection of transcription

errors. The ExperimentID with its metadata is committed to GitLab as a YAML file and also stored in iRODS for

use by the upload services. The ExperimentID will later be entered into the Patient Name field on the MRI scanner

user interface by the operator.

iRODS

iRODS is deployed as a Docker container which extends an existing, published PostgreSQL container. Backing store

for the iRODS vault is currently provided by a 100TB ZFS raid array directly connected to the Docker Host. The

iRODS container performs regular, incremental backups of the PostgreSQL database to the container backing store,

which is in turn regularly backed up to tape. We have configured the iRODS deployment for Transport Layer Security

(TLS)[22] only access.

7

21

TLS-only iRODS does result in some extra encryption/decryption processing for data exchanges on the Docker

internal network, where TLS is arguably not required. Our current understanding is that iRODS cannot force use

of encryption on one network interface but allow lack of encryption on another. This ability would be required to

enable intra-container communications on the Docker Host to avoid encrypting tra�c to iRODS.

Davrods

We deploy the Davrods software from Utrecht University as our main path to providing iRODS data to end-users. We

have selected rclone[23] as our primary high bandwidth, data download tool which accesses iRODS through Davrods.

Various other WebDAV[25] clients may be used for browsing archived data, including those that present a shared

filesystem on the user’s workstation.

Metalnx

Metalnx will be added as a browsing method in the near future.

NGINX Reverse Proxy

Nginx is used as a reverse proxy. All external access to MrData web based interfaces, in particular to MrData forms,

Davrods, and Metalnx, go through Nginx via HTTPS. Nginx forwards tra�c to the individual services on an internal

Docker network using mere HTTP.

Siemens 9.4T Data Uploaders

We deploy three containers for uploading data from the Siemens 9.4T MRI scanner. They each handle one of the

following categories of data:

• DICOM data – Siemens provided DICOM image files – large number of small files

• TWIX data – Siemens proprietary raw data format files – small number of large files

• Expanded Data – Files not produced directly by the MRI scanner – a user defined file tree replicated to iRODS

Each of the upload services is implemented as a Python program using the Python iRODS Client[24] library. Each

service polls a particular area of the MrData LZ filesystem for data uploaded from the MRI scanner. As files flow

in to the LZ areas, the processes extract metadata in a content dependent way and recover an ExperimentID. The

ExperimentID is used to look up the experiment metadata in iRODS, in particular locating the StudyID. Using the

ExperimentID and the StudyID, an iRODS archive path for the files to upload is determined. The headers of the

DICOM and TWIX files are also processed to extract other metadata useful for searching and processing the archived

data. The data and metadata are then placed in the iRODS archive as collections and objects, with metadata in

Attribute/Value/Units (AVUs). The Expanded Data area is uploaded as an unmodified directory hierarchy to iRODS.

In the future, we will add the ability to codify metadata to be attached to objects in the Expanded Data.

An MrData experiment data archive iRODS path is formed on the following template:

/MRDataZone/home/mrdata/echtdata/studies/<studyID>/experiments/<experimentID>/<DataType>/

End-to-end MRI data path through MrData

MrData automates the flow of data from an MRI scanner to the computational processes of the scientific investigators.

Here, we follow the path of data from the MRI scanner, through the uploaders, and into the archive.

• The MRI scanner operator enters their userid and the ExperimentID in the Patient Name field on the console.

8

22

• The operator proceeds to scan the subject, potentially using stimulus required by the experimental protocol.

• During the scan, data flows from the MRI scanner to the MrData LZ mounted as a SMB network filesystem.

• The uploader processes poll the LZ mounted as an NFS filesystem, and begin processing the data as it arrives.

• The ExperimentID is extracted from each DICOM and/or TWIX file, and used to find the StudyID.

• The StudyID, ExperimentID, the file type, and metadata from file headers are used to form an iRODS path.

• The iRODS archive path for the ExperimentID is created and the DICOM and/or TWIX files put into iRODS.

• Additional metadata from the MRI file headers is added to the iRODS collections and objects as they are stored.

• The investigator (or automation) can then access the iRODS archive data for the experiment in soft real time.

• Viewing the image data may be done while the subject is still in the scanner so the experiment can be adjusted.

• Experiment Expanded Data in the LZ is copied to iRODS after 24 hours, or when the area is marked ”finished”.

• The experiment will be marked as finalized after given amount of time has passed or based on user input.

• Manual and automated process can now search and access all experiment data using normal iRODS methods.

• Investigators will be encouraged to store their computational results into iRODS under their own userid.

RELATED WORK

There are several systems available for medical image data handling which we explored before building MrData. We

explored using XNAT [26] and Loris [27] in depth. These are both excellent systems but in each case we found

ourselves extending them with significant amounts of local scripting. Further, we were not using a good deal of the

available features since they overlapped with Castellum, which satisfied our high level objective of separating the

human subject recruiting system from the data archival system. Finally, the modularity of the MrData system and

the underlying iRODS ecosystem will ease adding additional capabilities for future data management projects.

CONCLUSION AND FUTURE WORK

We have implemented MrData, an iRODS based data management system that automates the archival of data

streaming from a research MRI system. We carefully integrated with a GDPR compliant human subject recruiting

system, Castellum. To avoid manual transcription of subject mixed use metadata, we worked with the Castellum

team to establish a REST API to access this data via automation. The MrData system is deployed using Ansible

and Docker containers in a micro-services architecture making it extensible as well as testable.

Future work includes:

• Collecting DICOM files sequence groups and archiving a tar and NiFTI[28] file for each sequence group.

• Extending MrData automated archival to additional MRI systems at our institute and beyond.

• Full automation of the continuous integration pipeline using GitLab, Ansible, and Virtual Machine targets.

• Where it makes sense, explore creating open source repositories for the MrData project.

• Trigger automatic workflow processing on the acquired data.

9

23

ACKNOWLEDGEMENTS

The authors want to thank Dr. Timo Göttel, from the Max Planck Institute for Human Development in Berlin, and

the Castellum team for supporting the integration of Castellum in this project. We further want to thank Dr. Jonas

Bause, from the Max Planck Institute for Biological Cybernetics in Tübingen, for his contribution to the design of

the MrData project. Funding by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) under

the Reinhart Koselleck Programme (DFG SCHE 658/12) and by the European Research Council (ERC Advanced

Grant No 834940, SpreadMRI) is gratefully acknowledged.

References
[1] General Data Protection Regulation (GDPR). 2018. General Data Protection Regulation (GDPR) – Final text

neatly arranged. [online] Available at: <https://gdpr-info.eu/> [Accessed 29 June 2022].

[2] RODS: Open Source Data Management Software. https://irods.org [Accessed 2 July 2022]

[3] Castellum A Privacy-Compliant Subject Management for Scientific Research https://www.mpib-berlin.mpg.

de/research-data/castellum [Accessed 1 July 2022]

[4] Protected Health Information vs Personal Identifiable Information https://www.accountablehq.com/post/

pii-vs-phi [Accessed 2 July 2022]

[5] Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Jour-

nal ()2014)

[6] Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT

tasks. https://docs.ansible.com/ansible/latest/index.html [Accessed 2 July 2022]

[7] Ansible Community Modules and plugins for working with Docker https://galaxy.ansible.com/community/

docker [Accessed 2 July 2022]

[8] Davrods - An Apache WebDAV interface to iRODS https://github.com/UtrechtUniversity/davrods [Ac-

cessed 1 July 2022]

[9] Metalnx is a web application designed to work alongside iRODS. It is a graphical user interface and serves

as a client that authenticates to an existing iRODS Zone. https://github.com/irods-contrib/metalnx-web

[Accessed 3 July 2022]

[10] Nginx https://nginx.org/en/ [Accessed 1 July 2022]

[11] Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., Notredame, C.. Nextflow enables

reproducible computational workflows. Nature biotechnology (2017)

[12] REST is an acronym for REpresentational State Transfer and an architectural style for distributed hypermedia

systems https://restfulapi.net/ [Accessed 2 July 2022]

[13] Rocky Linux is an open-source enterprise operating system designed to be 100% bug-for-bug compatible with

Red Hat Enterprise Linux® https://rockylinux.org/ [Accessed 2 July 2022]

[14] OpenZFS is an open-source storage platform. https://openzfs.org/wiki/Main_Page [Accessed 13 July 2022]

[15] DICOM® — Digital Imaging and Communications in Medicine — is the international standard for medical

images and related information. https://www.dicomstandard.org [Accessed 1 July 2022]

[16] Wiggins,R., ,Block, K. T. Yarra Framework – Open-Source Toolkit for Clinical-Translational MRI Research. [on-

line] https://s3.amazonaws.com/download.yarraframework.com/doc/ISMRM19_Whitepaper.pdf [Accessed 30

June 2022]

[17] IBM Spectrum Scale https://www.ibm.com/products/spectrum-scale [Accessed 2 July 2022]

10

24

[18] Compose is a tool for defining and running multi-container Docker applications. https://docs.docker.com/

compose [Accessed 2 July 2022]

[19] DevOps platform build around git https://about.gitlab.com/ [Accessed 2 July 2022]

[20] YAML Ain’t Markup Language™ https://yaml.org/ [Accessed 2 July 2022]

[21] Flask is a lightweight WSGI web application framework. https://flask.palletsprojects.com/en/2.1.x/ [Ac-

cessed 2 July 2022]

[22] The Transport Layer Security (TLS) Protocol Version 1.3 https://datatracker.ietf.org/doc/html/rfc8446

[Accessed 2 July 2022]

[23] Rclone syncs your files to cloud storage https://rclone.org/ [Accessed 2 July 2022]

[24] Python iRODS Client (PRC) https://github.com/irods/python-irodsclient [Accessed July 1 2022]

[25] WebDAV Protocol (rfc4918). https://datatracker.ietf.org/doc/html/rfc4918

[26] Marcus, D. S., Olsen, T. R., Ramaratnam, M., Buckner, R. L. The Extensible Neuroimaging Archive Toolkit:

an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics (2007)

[27] Das, S., Zijdenbos, A. P., Harlap, J., Vins, D., Evans, A. C. LORIS: a web-based data management system for

multi-center studies. Frontiers in neuroinformatics (2012)

[28] Neuroimaging Informatics Technology Initiative https://nifti.nimh.nih.gov/ [Accessed 13 July 2022]

11

25

26

Programmable authentication workflows in iRODS
Stefan Wolfsheimer

SURF
Utrecht, The Netherlands
stefan.wolfsheimer@surf.nl

Claudio Cacciari SURF
Utrecht, The Netherlands
claudio.cacciari@surf.nl

Harry Kodden SURF
Utrecht, The Netherlands

harry.kodden@surf.nl

ABSTRACT

iRODS (Integrated Rule-Oriented Data System) [1] supports various authentication methods such as native authen-

tication (username and password), GSI, Kerberos, and OpenID. New authentication methods are implemented as

shared libraries that need to be installed on client and server sides. Client libraries such as python-irodsclient may

need to be patched to support any new authentication protocol.

A universal implementation that supports all authentication flows is clearly favored over managing combinations

of client and server libraries and flows. The PAM (Pluggable Authentication Module) [2] mechanism is a way

to implement and customize authentication flows on the server without needing to adjust the software that uses

this mechanism. Existing PAM libraries may be combined to implement flows featuring branches, multiple-factor

authentication, and much more. The PAM mechanism is already supported by iRODS but the current version of

the plugin is restricted to the standard flow only (username and password). We have implemented an authentication

plugin for iRODS 4.3.0 ”pam_interactive” that enables the flexibility of fully-fledged PAM authentication flows

beyond the standard case.

SURF, the Dutch cooperative association of educational and research institutions, will use that implementation to o↵er

new features to iRODS users. Two scenarios are especially relevant: the support of the SURF Access Management

Provider (SRAM), which allows multiple Identity Providers to authenticate a user with iRODS, and the support of

Multi-Factor Authentication (MFA) directly at iRODS level, which is often required for sensitive data management.

Keywords

PAM stack, authentication, plugin, OIDC.

INTRODUCTION

Linux-PAM [2] is a mechanism that aims at standardizing user authentication workflows. The mechanism is flex-

ible such that it is possible to support a number of di↵erent authentication methods and combinations of them.

PAM supports four management groups: account management, authentication, password management, and session

management. The scope of this paper and the implemented iRODS plugin is the authentication flow only. The

present paper is a follow-up of the work described in a paper presented at UGM 2019 [6], where a similar approach

was adopted. In the previous implementation, the complexity of the flow was encapsulated by an additional web

component required in front of the iRODS Catalog Provider which increased the overhead and limits the flexibility.

System administrators can mix and match from a variety of PAM-modules to implement authentication flows of

arbitrary complexity [3]. PAM-modules are layered on a stack which is processed from top to bottom. Finally, a

status is returned indicating the success or failure of the authentication flow. Each module itself returns a status

code. A control value, which is assigned to each layer, indicates a criterion of how status codes are to be handled. For

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Copyright 2022, SURF b.v.]

1

27

example, if a module with control value sufficient returns status code success, the stack terminates with success

(state ”authenticated”). While a failed module assigned required causes the whole flow to fail.

PAM-Modules are shared libraries that bridge the communication between directory services, user databases, flat

files, etc. with the PAM framework [4].

In order to enable applications with PAM, application developers need to implement the user-facing parts of the

authentication flow (e.g., retrieving login information from the user) and delegate the flow control to the PAM

library [5]. This approach is described below in the PAM flows sections. In the section Usage, we discuss a few

configuration patterns and examples using the flexible pam_python module.

IMPLEMENTATION

PAM flows

The authentication procedure of a PAM-enabled application is controlled by the PAM library. The process can be

seen as a state machine defined by the PAM configuration. The user interaction is realized by callback functions

that are passed from the application to the PAM library. The function is called on each transition that requires user

interaction (e.g. querying users’ credentials, printing a message on the screen, etc.). The PAM architecture with each

component is shown in Figure 1.

LDAP

Database

Application

authentication

promptEchoOff

promptEchoOn

errorMsg

textInfo

PAM library

pam_authenticate

pam configuration

pam_modules

pam_db.so

pam_ldap.so

pam_<webserver>.so

WebService

Application developer

System administrator

Module developer

Figure 1. PAM configuration: PAM enabled application, PAM library, PAM stack configuration, PAM modules,

and services

PAM flows over the network

Enabling applications with PAM is straightforward when all components, the PAM library, the PAM configuration,

and the application are installed on the same host. The situation is more complicated for client-server systems such

as iRODS. In this case, the PAM library and the configuration are installed on the server, while the user interaction is

realized on the client-side. This implies that the callback functions invoked by the PAM library need to wait for user

2

28

input on another host during their lifetimes. On the other hand, the iRODS API is implemented as a request-response

model, where the client drives the communication between the components by requesting resources from the server.

A callback to the client from the server is not directly supported in such protocols.

Running

Ready

Waiting WaitingPw

Next ResponseAuthenticated NotAuthenticated User

Figure 2. State diagram of the PAM flow

To overcome this limitation we have designed the PAM workflow as a state machine (see Figure 2). The conversation

is triggered by a user wanting to login to iRODS (e.g. using iinit). The initial state is Running which is immen-

diatly turned to Ready. A transition from Ready to one of the states Waiting, WaitingPw, Next, Authenticated or

NotAuthenticated is driven by the PAM configuration. As suggested by the names, the states Authenticated and

NotAuthenticated refer to the final states of successful and unsuccessful authentication, respectively. The transition

from Ready to next Next is silent or accompanied by a message that is printed on the screen of the client. After the

transition from Ready to Waiting or WaitingPw a message is printed and the user is expected to type a response.

The transition from Waiting and WaitingPw to Response is triggered by the client after the user has provided the

response. The transition from Next to Ready is triggered by the client to indicate the readiness for another iteration.

The transitions triggered by the client are indicated as dashed lines. Since those transitions depend on user input, the

callback functions cannot simply return a value back to the PAM library. Instead, instances of the functions remain

idle waiting for a response from the client. Technically, this behavior is implemented by a condition variable that is

active during the lifetime of the callback function.

The sequence diagram in Figure 3 illustrates a simple PAM conversation over the network. There are four components

involved:

• The iRODS client (icommands)

• The iRODS server

• The pam_interactive plugin

• The PAM library.

The blue boxes indicate the lifetimes of the callbacks. Notice that the transition from Waiting to Response will wake

up a condition variable.

USAGE

State persistency

After the user has successfully authenticated using the PAM stack, a temporary password is generated which is

valid for one hour by default. This password is used by icommands to authenticate against the server. After the

expiration period of the password, the PAM authentication is again executed whenever a user invokes a icommands.

The responses of the last conversation are locally cached and repeated. Below, we describe alternative flows.

3

29

:iRODS server

:pam_interactive

:PAM lib

Waiting

pam_authenticate

cb: promtEchoOn
WAITING,
 "Login:"

"user"

Running

NEXT

cb: promtEchoOff
WAITING,

 "Password"

AUTHENTICATED

"secret"

NEXT

AUTHENTICATEDAUTHENTICATED

auth_client_start

:iRODS client

"user"

"secret"

user

auth_agent_request

auth_agent_response

login >

password>

Ready

Next

WaitingPw

Next

Respone

Respone

Figure 3. State diagram of the PAM flow

The expiration time of the password can be overridden by the user via the time-to-live option (-ttl, in hours) of

iinit. The iRODS server administrator can set the range of valid values for the TTL value in the server configuration

file (/etc/irods/server_config.json):

"plugin_configuration": {

"authentication": {

"pam_interactive" : {

"password_min_time": 3600,

"password_max_time": 7200

}

}

}

Notice that in the current implementation of iRODS, the smallest granularity of the TTL is in hours. The values in

the server configuration are given in seconds to support future versions with smaller granularity.

Prototyping with pam_python

In this section, we discuss the ability of the pam_interactive plugin from the perspective of a PAM module developer

and a PAM system administrator. In order to keep the discussion illustrative and generic, we use the pam_python

[7] module. In contrast to many other modules, this module does not rely on specific backends or user databases.

pam_python is convenient for

4

30

• implementing prototypes of PAM modules for novel backends

• illustrating PAM flows and

• implementing regression tests

However, the pace of the development is relatively slow. Thus, there is no guarantee that the software will be

supported in the future.

Consider, for example, the following PAM stack (/etc/pam.d/irods), which uses the pam_python.so module with

the required control variable:

auth required pam_python.so /etc/pam.d/simple.py

The user will be successfully authenticated when the pam_sm_authenticate function defined in the python module

returns PAM_SUCCESS. The following implementation mimics the authentication against a simple user database.

USERS_DB={

'ayub': 'pw',
'mara': 'ACtoRPHI',
'noah': 'NgPOWArs'

}

def pam_sm_authenticate(pamh, flags, argv):

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, "login:"))

pwd_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_OFF, "password:"))

login = msg.resp

password = pwd_msg.resp

if login in USERS_DB and password == USERS_DB[login]:

return pamh.PAM_SUCCESS

return pamh.PAM_AUTH_ERR

In a real-life application, the dictionary would be replaced by a user directory, such as LDAP or another database.

Next, we illustrate how one would enable a second factor required to successfully log in. This can be realized by

adding a second required layer on the pam stack

auth required pam_python.so /etc/pam.d/simple.py

auth required pam_python.so /etc/pam.d/2fa.py

Now, both layers are required. The user needs to enter their regular credentials before being asked for a one-time

PIN generated by a key generator. The module of the second layer can be implemented as follows:

def pam_sm_authenticate(pamh, flags, argv):

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, "pin:"))

pin = msg.resp

if pin == "1234":

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

5

31

According to the implementation, the correct PIN is the fixed value 1234. In real-life applications, this stub should

obviously be replaced by a real validation. Notice that the logic is entirely driven by the backend and controlled by

the systems administrator. In contrast to other iRODS authentication methods, new policies (e.g. enabling a second

factor) can be rolled out without changing the local client configurations and actively supporting users.

Persistent client information

The user responses to the conversation are stored locally in a JSON document next to the scrambled password. They

can be reused as default values when the user logs in again. However, in some cases, this behavior is not desirable. For

example, it does not make sense to store and reuse the values of one-time passwords for second-factor authentications.

On the other hand, some workflows may require storing and retrieving data without user interaction. In order to

address these use cases, we have extended the standard protocol. The server can either send simple messages (as in

the example above), or JSON payloads describing a set of operations. The message has the form of a JSON object

with the following (optional) keys:

• prompt: a message to be printed on the screen,

• default_path: the JSON path to the default value,

• patch: a list of patches to be applied to the locally stored JSON document (The patches are implemented

according to the specification RFC6902 [8, 9]. and

• retrieve: a JSON path to the locally stored JSON node to be sent back to the server

Example 1: prompt and patch

The following example, a modification of the 2fa.py script from the previous section, illustrates the use of the prompt

and patch fields. The PIN is returned but not stored locally because of the absence of the patch field. After successful

authentication, a token is sent to the client and stored locally:

import json

import uuid

def pam_sm_authenticate(pamh, flags, argv):

just prompt, don't save the pin locally

pin = {"prompt": "pin:"}

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(pin)))

pin = msg.resp

if pin == "1234":

token = str(uuid.uuid4())

save token on client, no prompt

patch = {"patch": [{"op": "add",

"path": "/token",

"value": token}]}

msg = pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO,

json.dumps(patch)))

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

6

32

Example 2: default_path

Notice that it is also possible to query a message from the user and save it locally under a given path. For example,

the following message queries a pin and stores it under the path /pin in the local JSON document. The next time

the PIN is queried, the default value is take from the JSON document under the path /pin.

prompt and save the pin locally

pin = {"prompt": "enter pin:",

"default_path": "/pin",

"patch": [{"op": "add",

"path": "/pin"}]}

Example 3: retrieve

Suppose we have stored the token under the path /token. Then the data can be retrieved with the payload {"re-

trieve": "/token"}. The following pam_pythonmodule requests the locally stored token from the client and returns

the result

import json

def pam_sm_authenticate(pamh, flags, argv):

payload = {"retrieve": "/token"}

msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(payload)))

token = msg.resp

payload_resp = {"prompt": "token={}".format(token)}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload_resp)))

return pamh.PAM_SUCCESS

This example concludes the fundamental operations that can be applied to the local JSON document. PAM module

developers and/or administrators can make use of them to implement complex flows.

In the following section, we turn to an application that has motivated the need of a flexible authentication flow.

OpenID Connect

Our need to support multi-factor authentication and federated identity management led us to choose the OpenID

Connect protocol, which adds, on top of the OAuth2 authorization protocol, an authentication token that includes

some basic user profile information. The main use case for the OIDC protocol is the authentication of a web application

against an Identity Provider (IdP). But our users want to log in iRODS via the command line. In order to do that

we have adapted one of the OIDC flow, the Authorization Code Flow (defined in OAuth 2.0 RFC 6749, section 4.1,

[10]), as shown in Figure 4.

Clearly, it would not have been possible to implement that flow without the new authentication plugin. In fact,

the user is presented with a challenge (the log in URL) and the server waits for a response. Beyond the Autho-

rization Code Flow, we have added steps 13-15 to map the identity of the user to an iRODS account, using one of

the available attributes, like, for example, the email address. In terms of the PAM python module, the function

pam_sm_authenticate could be written in the way given in the APPENDIX.

When the token is not valid, the authentication simply fails, but it would be possible to use a refresh token to

automatically renew the expired one.

7

33

Figure 4. OIDC Authorization Code Flow: adapted for the interaction via command line

CONCLUSION

pam_interactive provides a backend-driven programmable and flexible authentication mechanism for iRODS. By

simplified examples, we have illustrated solution patterns for programing multifactor authentication flows and token

management.

The plugin supports a large range of authentication methods and customized flows because the conversation is not

restricted to simple login-password credentials. The capability of storing information locally can be extended in future

releases. One can think of JSON Web Token as a common technique to implement single signed-on in web-based

applications. Adopting this technology to iRODS would improve the interoperability with other systems.

ACKNOWLEDGMENTS

We thank the members of the iRODS Authentication Working Group for the organization of regular meetings and

open discussions. We also thank our colleague Maithili Kalamkar-Stam for critical proofreading on very short notice.

APPENDIX
OIDC authentication example code

def pam_sm_authenticate(pamh, flags, argv):

try:

user = pamh.get_user(None)

except pamh.exception, e:

8

34

user = None

pamh.conversation(pamh.Message(pamh.PAM_ERROR_MSG, str(e.pam_result)))

if user == None:

return pamh.PAM_USER_UNKNOWN

no_token = True

Check if the user has a token

payload = json.dumps({ "retrieve": "/oauth2_access_token"})

token_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, payload))

if token_msg is not None and len(token_msg.resp.strip()) > 0:

Validate the token

result = validate_token(user, token_msg.resp, INTROSPECT_URL, OIDC_USER_MAP)

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Authentication: {}".format(result)))

if (result.strip() == "Success"):

no_token = False

return pamh.PAM_SUCCESS

else:

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Invalid token: {}".format(result)))

if no_token:

state = uuid.uuid4()

Get the login URL

params = {"response_type": "code",

"client_id": CLIENT_ID,

"redirect_uri": REDIRECT_URI,

"scope": "openid offline_access email eduperson_principal_name"

"state": state}

loginURL = AUTHORIZATION_EP + '?' + urlencode(params)

Copy it to the browser

payload = {"prompt": "Copy the following URL to your web browser:"}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

payload = {"prompt": loginURL}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

Copy back the callback string

request without saving answer locally

payload = {"prompt": "Copy the callback string from your web browser here:"}

callback_msg = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_ON, json.dumps(payload)))

Get a token

token = oidc_get_token(callback_msg.resp, REDIRECT_URI, TOKEN_EP, BASE64CREDS)

Validate the token

result = validate_token(user, token, INTROSPECT_URL, OIDC_USER_MAP)

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, "Authentication: {}".format(result)))

9

35

if (result.strip() == "Success"):

save a simple cookie on the client

display an optional message

payload = {"prompt": "the cookie 'oauth2_access_token' has been updated",

"patch": [{"op": "add",

"path": "/oauth2_access_token",

"value": token}]}

pamh.conversation(pamh.Message(pamh.PAM_TEXT_INFO, json.dumps(payload)))

return pamh.PAM_SUCCESS

else:

return pamh.PAM_AUTH_ERR

REFERENCES

[1] Integrated Rule-Oriented Data System (iRODS) https://irods.org/

[2] Linux-PAM. http://www.linux-pam.org/ Visited last on 06.24.2022.

[3] Morgan, A.G., Kukuk, T.: The Linux-PAM System Administrators’ Guide, Version 1.1.2, 31. (2010)

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html

[4] Morgan, A.G., Kukuk, T.: The Linux-PAM Module Writers’ Guide

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html Version 1.1.2, 31. (2010)

[5] Morgan, A.G., Kukuk, T.: The Linux-PAM Application Developers’ Guide

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html Version 1.1.2, 31. (2010)

[6] Cacciari, C., Muscianisi G., Carpené, M., D’Antonio, M. and Fiameni G. An authentication solution for iRODS

based on the OpenID Connect protocol, iRODS User Group Meeting Proceedings (2019)

[7] Stuart, R.: pam_python: Write PAM modules in Python http://pam-python.sourceforge.net/ Version

1.0.8-1. (2020)

[8] Lohmann, N. et. al.: JSON for Modern C++ https://json.nlohmann.me/ Version 3.7.3 (2022)

[9] JavaScript Object Notation (JSON) Patch, RFC 6902 https://www.rfc-editor.org/info/rfc6902 (2013)

[10] The OAuth 2.0 Authorization Framework, RFC 6749 (2012) https://www.rfc-editor.org/info/rfc6749

10

36

iRODS as a data backend for the LEXIS workflow
orchestration platform

Mohamad Hayek, Stephan Hachinger

Leibniz Supercomputing Centre
mohamad.hayek@lrz.de

Martin Golasowski, Jan Martinovič

IT4Innovations, VŠB – Technical University of
Ostrava

martin.golasowski@vsb.cz

ABSTRACT

In this contribution, we present the current status of the iRODS federation used as a part of the Distributed Data

Infrastructure in the LEXIS platform. This backend has been built in the European Horizon 2020 project "Large-

Scale EXecution for Industry and Society" (LEXIS, H 2020 GA 825532) and was verified against a wide range of

use cases from industry and society. We report on our experience in maintaining and extending the iRODS

federation with a focus on the current challenges. Afterwards, we lay out our experience with enabling OpenID

authentication for Keycloak integration and methods used to ensure synchronized fine-grained access control

between iRODS and Keycloak. We then discuss our strategy to enable data staging between iRODS and various

Cloud and HPC systems within the LEXIS platform via a REST API. Furthermore, we address the periodic testing

of different aspects of the federation and the alerting system put in place to react to any irregularities in the tests.

Finally, we present the results of speed tests done between the different nodes of the federation and we give an

outlook on future work that might be interesting for the iRODS community.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

37

38

Managing high-throughput sequencing and other -
omics data with RODEOS and rodeos-ingest

Clemens Messerschmidt, Marten Jäger, Mathias Kuhring, Dieter Beule and Manuel

Holtgrewe

Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Bioinformatics
clemens.messerschmidt@bih-charite.de

ABSTRACT

Omics data are generated by high-throughput biochemical assays that simultaneously quantify and/or characterize

molecules of the same type in biological samples. In biomedical research, omics data acquisition is often performed

in specialized technology units referred to as core facilities. Using complex (and often expensive) devices such as

sequencers and mass-spectrometers, these units produce a wealth of different high-volume datasets that need to be

organized, stored, quality checked, pre-processed or transformed and eventually delivered to clients, archived or

deleted.

To streamline and automate the data management and handling processes while supporting the diversity of projects

and clients present in the research organization, we introduce RODEOS (Raw Omics Data accEss and Organization

System). The system is based on iRODS and rodeos-ingest, a custom event handler that extends the iRODS

automated ingest framework. The automatic ingest enables an easier control of data through its life cycle from

generation to delivery and deletion by unlocking iRODS' advantages like data discovery, connecting workflows

based on the rule engine, as well as secure collaboration.

To enrich metadata beyond simple file attributes, rodeos-ingest extracts additional technology-specific parameters

from files generated by the omics units' devices when processing samples. We provide examples for widely used

Illumina sequencers and demonstrate how the extracted metadata could be used to support demultiplexing and data

QC workflows. Furthermore we integrated Metalnx as an additional user interface to RODEOS. This allows the wet-

lab staff to easily add further iRODS metadata, e.g. for choosing data delivery paths and also empowers clients to

view their data and track progress. This reduces the complexity of operations for everyone involved, especially

when used in cross-institutional settings if coupled to (possibly multiple) Active Directory services for user

authentication.

RODEOS is in active use at the integrated sequencing unit of the Max Delbrück Center for Molecular Medicine

(basic research) and the Berlin Institute of Health at Charité (university hospital). Additional rodeos-ingest modules

are planned to support more facilities and technologies, e.g. mass spectronomy for metabolomics or proteomics.

Rodeos-ingest is MIT-licensed and available at https://github.com/bihealth/rodeos-ingest

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

39

40

Can Blockchain Technology Play a Role in iRODS?
Arcot Rajasekar

University of North Carolina at Chapel Hill
sekar@renci.org

ABSTRACT

Blockchain technology has matured and is increasingly applied in a diversity of applications. Some of its intrinsic

properties, such as secure database, distributed ledger, provenance tracking, integrity checking and trust worthiness,

consensus maintenance and data sharing, and crypto-security, are values that are also central to iRODS. One view of

blockchain is a Distributed, Immutable Ledger (DIL) that facilitates recording information about assets. One view

that is interesting to the iRODS community is that of a Blockchain Storage (BCS) can be used to save data files

(sharded as blocks) in a decentralized network as opposed to storing files in a centralized cloud storage. This

approach provides all the advantages of the blockchain technology but uses enormous amount of storage. An

alternate is to store just the hash of the data (but store data elsewhere) in the blockchain. One can also attach

minimal useable metadata (MUM) to the hash and provide access to that in a private or public network. Blockchains

also support rule-based actions, called smart contracts. Smart contracts are digital 'contracts' stored on the

blockchain that are automatically executed when predetermined terms and conditions are met. One can notice the

similarities to the iRODS rule system. Blockchains also support the concepts of private, public, permissioned

exchanges of information. With such close functional similarity, taking advantage of synergetic properties will

enhance the applications of iRODS in a diversity of applications including supply chain, health informatics,

government, retail, etc. where transactional properties with large datasets dominate. In this paper, we look at various

ways one can enhance iRODS with blockchain technology.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

41

42

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium
Authors retain copyright.

1

Data Management Environment at the National Cancer
Institute

Sunita Menon

Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

sunita.menon@nih.gov

Eran Rosenberg

Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

eran.rosenberg@nih.gov

Yuri Dinh

Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

yuri.dinh@nih.gov

Dr. Zhengwu Lu
Bioinformatics and Computational

Science,
Frederick National Laboratory for
Cancer Research, Frederick, MD

zhengwu.lu@nih.gov

Prasad Konka
Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

prasad.konka@nih.gov

Dr. George Zaki
Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

george.zaki@nih.gov

Udit Sehgal

Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

udit.sehgal@nih.gov

Sarada Chintala
Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

sarada.chintala@nih.gov

Dr. Eric Stahlberg

Cancer Data Science Initiatives,
Frederick National Laboratory for
Cancer Research, Frederick, MD

eric.stahlberg@nih.gov

Ruth Frost
Bioinformatics and Computational

Science,
Frederick National Laboratory for
Cancer Research, Frederick, MD

ruth.frost@nih.gov

ABSTRACT

An efficient and cost-effective mechanism is required to store and manage the large heterogeneous datasets generated
by high throughput technologies such as Next Generation Sequencing, Cryo-Electron Microscopy, and High Content
Imaging. High-performance tier 1 storage is expensive, and the affordable tier 2 devices used standalone do not lend
themselves well to discovering and disseminating datasets. The Data Management Environment (DME), a data man-
agement platform for storing and managing high-value scientific datasets, was developed at the National Cancer In-
stitute to close this gap. DME addresses the long-term data management needs of research labs and cores at NCI per
the FAIR [1] (Findable, Accessible, Interoperable, and Reusable) guiding principles for data management. It supports
S3 compatible object store, as well as file system storage. DME uses iRODS [2] as the metadata management layer
enabling virtualization of backend storage, replacement of storage providers with zero impact on users, and transparent
migration of data across providers. The granular permissions scheme provided by iRODS coupled with DME's au-
thentication and authorization mechanism enables researchers to share data with collaborators securely. This paper
will provide an overview of the capabilities and architecture of the Data Management Environment and discuss how
DME has leveraged iRODS to deliver enhanced data management and storage management capabilities.

Keywords

DME, iRODS, data management, scientific datasets, metadata, virtualization, data migration, object store

43

2

INTRODUCTION

Research labs and cores utilizing high throughput instruments regularly generate data at terabyte and petabyte-scale.
The data collected from the instrument is moved to a local drive or network-attached storage, from where it makes its
way to one or more computational servers and analysis workstations. Copies of the raw and analysis data are made to
secure them, resulting in the generation of multiple redundant copies along the processing path. Often, researchers
share the data with one or more collaborators, who make more copies along new processing paths. New files are often
added to these directories, or the original files are reorganized to align with the analysis performed. After a while, the
provenance information of the initial dataset is no longer available, making storage space recovery extremely chal-
lenging. Staff turnover only adds to the problem. The data stays forever in the expensive tier 1 storage devices. Some
of it is moved later to the infrequently accessed tier 2 devices like tape storage, which is much cheaper but needs heavy
investment in time and effort to retrieve the data. Since this data is not annotated, further effort is required to search
and locate what is needed. These limitations also prevent the sharing and processing of data in integration and analysis
platforms for further study and research.

To solve this problem, we need to store the data in cost-effective, reliable storage (Figure 1) from where it is directly
and easily accessible for reuse. The data needs to be secured from unauthorized access while at the same time being
shareable with collaborators whenever required. It should be annotated with the appropriate provenance and domain
metadata, easily searchable and downloadable. It should be migratable to other storage devices when the lifecycle of
the current device has ended. The migration should be transparent to users so that there is no burden on learning to
use a new interface or technology to retrieve the data and no impact on the bioinformatics pipelines and data analysis
platforms that access it programmatically. It should be easy to tier the data to cold storage or dispose of it when the
predetermined lifecycle of the data has ended.

Figure 1. Data Management System Requirements

The Data Management Environment (DME) was developed to address these needs. DME is a metadata-based data
management platform that provides secure, virtualized storage for high-value scientific datasets generated at NCI. Its
reliable storage mechanism and the ease of accessing and sharing large datasets eliminate the need for users to maintain
copies of datasets in their local or network-attached storage.

SYSTEM OVERVIEW

Data Management

Store Reliably Share Securely

Migrate Transparently

Transfer Quickly

Discover Easily

Findable

Interoperable

Accessible

Reusable

Annotate appropriately

Hierarchy
Indexes

Provenance
Domain

Authoriza1on
Permissions

Authen1ca1on
Data Integrity

Modali1es
Performance

Virtualiza1on
Auto-tiering

44

3

DME was designed to archive and share large, heterogeneous datasets. DME archives data to S3-based object stores
that presently include Cleversafe [3], Cloudian [4], and Amazon S3 Glacier Deep Archive [5]. Support is also available
for archiving to network file systems.

Data in DME is associated with provenance and domain metadata to enable the targeted discovery of datasets. DME
performs all data management functions are performed through iRODS. These functions include the management of
collections, data objects, user accounts, user groups, metadata, and permissions.		Using iRODS for data management
functions has enabled DME to perform storage virtualization, data migration, and data tiering transparently. These
critical capabilities have provided users with a seamless data management experience, enabled secure data sharing,
and significantly eased the IT functions required to manage large data volumes. It has also enabled DME to be domain
agnostic, facilitating its broad adoption across NCI.

Interfaces

DME provides the following interfaces (Figure 2) for users to interact with the system:

• The DME web application enables users to easily browse, store, search and download data through an intuitive user

interface. Transfer status screens enable detailed tracking of ongoing asynchronous bulk transfers. Users can create
‘bookmarks’ to enable quick access to desired collections. Other capabilities include user account management,
group management, and reporting.

• The command-line utilities (CLU) provide shell commands for programmatic access from bioinformatics pipelines
and workflows. CLUs can be used to store, search and download data. User account management and bookmark
creation are also supported.

• The representational state transfer (REST) API suite provides fine-grained control of DME services and enables
programmatic integration with data analysis platforms and external third-party applications.

• The DME Archival workflow supports users requiring regular bulk uploads. It enables fully automated archival of
datasets. The workflow scans the source directories specified by the user at pre-configured intervals to locate the
files to be archived. It then extracts the metadata from metadata input files based on the rules configured in a custom
user module and uploads the annotations and the corresponding dataset to DME. Supported metadata file formats
are JSON, XML, and Excel.

Figure 2. DME Interfaces

Authentication and Authorization

A DME user account is required to obtain access to the system. A user account can be created for a user only if the
requested user identifier is present in the NIH Active Directory system. However, a user with an active DME account
cannot access files or collections unless explicitly permissioned by the data generator.

45

4

To prevent the password and username from being sent for each CLU or REST API call, an access token is issued
when the user successfully authenticates with the system using the token generator CLU or the authenticate API. The
returned token can then be used for subsequent calls until it expires. The expiration period is configurable for a specific
installation.

Transfer Modalities

Data can presently be uploaded from or downloaded to five endpoint types - Amazon S3 [6], Google Cloud [7], Google
Drive [8], Globus endpoint [9], and the user’s local file system. We continually evaluate and add new transfer modal-
ities to make the system more broadly useable based on user feedback and NCI needs.

DME ARCHITECTURE

Figure 3. DME Logical Architecture

DME consists of the API server providing the platform core services, the DME web application that provides the
graphical user interface, and the command-line interface (CLI) that is fronted by the command line utilities (CLU).
The web application and the CLI/CLU communicate with the API server through the DME REST API. The API
server includes ‘schedulers’ that perform various tasks in the background at separately configured intervals.

The DME production infrastructure consists of the following components:

46

5

• Tomcat 8 [10] server hosting the DME web application

• 6 API servers running on Apache ServiceMix [11]

• iRODS 4.2.9 server

• Oracle [12] 19c database server hosting the iRODS metadata database
• On-premises Cleversafe and Cloudian vaults

• Amazon S3 and S3 Glacier Deep Archive

All servers run on CentOS 7 machines with the default Java 8 installation. The scheduler is packaged as a separate
ServiceMix feature enabling it to be deployed separately from the API server. The schedulers are distributed across
the 6 API servers, enabling dynamic, horizontal scaling of services in response to user load.

We implemented the platform core services in a modular, layered architecture (Figure 3) to provide clean interfaces
and separation of concerns, making it easy to maintain and scale the system. The services are implemented in Java
using the Spring Framework. Each horizontal layer exposes its services through the layer’s exported API, thus hiding
the details of its implementation.

The REST API layer invokes the APIs exposed by the business services layer, which orchestrates one or more appli-
cation services to deliver the requested service.

The data access objects (DAOs) connect to the Oracle database to write and read data to and from the DME tables and
materialized views that have been set up to support reporting and other business requirements.

The integration services interfaces with external subsystems, enabling easy replacement of these subsystems without
impacting the higher layers. It contains the following modules:

• LDAP authenticator authenticates the user credentials with the NIH Active directory.
• The Data Management module communicates with the iRODS server through the Jargon API [13].
• The Data Transfer Proxies manage the transfer of data to and from physical storage and the migration and

tiering of data across S3 storage providers. The proxies include modules for interfacing with S3 providers,
Globus, Google Cloud, Google Drive, and SPS [14]. This decoupling of data transfer functions enables easy
replacement of the backend storage without impacting the data management functions.

• SPS authorization module provides the token received from third-party applications to the NIH authorization
web service for verification.

DATA MANAGEMENT

Metadata is associated with both collections and data objects in DME. DME categorizes metadata as system and user
metadata. System metadata is automatically captured in DME when a data object is created and cannot be added or
modified by the user. It includes the file size, file archive location, checksum, data transfer type, data transfer status,
and transfer date. The user metadata is provided by the user and consists of provenance and domain metadata. Prov-
enance metadata is the same for all the user groups in DME and is collected for administrative and maintenance
purposes, including determining the end of the data lifecycle. Domain metadata forms the backbone of efficient data
discovery and is defined by the user depending on their data management workflow and the granularity of the searches
required. The user metadata may be configured as mandatory or optional. The mandatory metadata is supplied during
object registration and is validated during that time. The optional metadata can be added anytime during the data
lifecycle and is not subject to validation. Most of the provenance metadata is mandatory.

DME provides flexibility to each Division/Office/Center (DOC) to define their data hierarchy (virtual folder organi-
zation) and metadata structure (attributes defined for each level in the hierarchy) in DME. These together constitute
the metadata model, which consists of three JSON policy files structured as follows:
• Data hierarchy file: Specifies each collection type, whether it is container collection, and the parent of the collection

47

6

• Collection metadata validation rules: Specifies the attributes of a collection. The name, a brief description, the parent
collection type, and the attribute type (whether mandatory or optional) are provided for each attribute.

• Data object validation rules: Specifies the attributes of a data object. The name, a brief description, the parent col-
lection type, and the attribute type (whether mandatory or optional) are provided for each attribute.

A DOC can have multiple metadata models, one for each sub-group.

User and Group Management

DME has implemented REST APIs and command-line utilities to manage users and groups using IRODs. Users and
groups can also be managed through the DME web application.

Group administrators and system administrators can create or delete users. They can retrieve all the users present in a
group or all users having a specific role. A new user account can be created in DME only if that user has an active
NIH Active Directory account. For creating the new account, only the NIH user identifier for that user is required.
DME automatically populates the last name and first name from the NIH LDAP. Email notification is optionally sent
to the user when the account is successfully created in DME. While adding a bookmark for a user, the user account is
automatically created if it does not exist, and permissions are set on a file or collection for that user.

Group administrators and system administrators can create or delete groups. They can add or remove users to/from a
group. They can search for groups and retrieve all the groups to which a user belongs. If metadata containing encrypted
PII information is present, DME decrypts it for a user only if that user belongs to the DOC’s DME security group.

Roles and Permissions

DME provides the ability to set the permission on all datasets, ensuring that only authorized users of the system can
access the data. IRODS fine-grained permissions scheme, coupled with the authentication mechanism implemented
by DME, has enabled highly secure data sharing with NIH collaborators.

The iRODS permissions scheme is applied to DME as follows:
• OWN permissions: The data generator uploading data to DME automatically gets OWN permissions for the

file or collection. In the case of core facilities uploading data for clients, the data generator or group adminis-
trator grants OWN permissions to the data owner or the designee of the data owner.

• WRITE permissions: The data generator or data owner grants WRITE permissions to users who need to modify
the metadata associated with the data asset.

• READ permissions: The data generator or the data owner grants READ permissions to researchers and collab-
orators who need to browse and download the data. Data can be shared with a larger audience by setting per-
missions for a group rather than individual users.

Permissions can be set on multiple files and collections simultaneously for a user. Additionally, multiple users can be
permissioned to a file or collection.

DME uses the iRODS roles to manage the activities a user is permitted to perform. A role can perform all the tasks of
the next lower role, in addition to the tasks described below:

• System Administrator (rodsadmin): This role is granted only to DME administrators. It enables them to create

the metadata model for new onboarding DOCs and monitor the status of the data transfers initiated by users.
System administrator privileges are required for data migration and tiering in DME. On request from the DOC,
System Administrators may perform user or data management functions.

• Group Administrator (groupadmin): This role is granted to the data generators, lab managers, or bioinformatics
analysts in a research lab or core. Group administrators perform data archival and user and group management
functions for their DOC. They also set permissions on the collections and files for the researchers and collabo-
rators requiring access.

48

7

• User (rodsuser): This is the default role assigned to researchers and collaborators working on a project. It
enables them to view, search and download the files and collections they are permissioned to see. If they are
provided OWN permissions to a collection, they can also register new sub-collections or files.

STORAGE VIRTUALIZATION

All users access data in DME through the logical path presented by iRODS. Users view the data through the data
hierarchy they have defined. This hierarchy translates to a non-hierarchical prefix-based structure for the S3 bucket,
with the logical path mapped to the key of the S3 object.

The physical path is stored as a metadata attribute of the data object, and the physical location and organization of
data are transparent to the users. The metadata in DME is decoupled from the storage, enabling easy replacement of
storage modalities. The storage provider URL is stored as a database configuration, and switchover of the S3 storage
provider only involves changing this configuration.

Since all references to the data are made through the iRODS collections and data objects, changes to the backend
storage have no impact on the systems and pipelines that are integrated with DME, enabling significant changes to the
storage infrastructure with just a few minutes of system downtime.

DATA MIGRATION AND TIERING

As the data progresses through its lifecycle and gets used less frequently, moving it to a slower, cheaper storage is
more cost-effective. Since the metadata is not attached to the data, this transition only involves setting up the lifecycle
rules and storage class and invoking the appropriate S3 API to facilitate the transfer. Tiering REST APIs have been
added in DME to enable tiering from Cleversafe and Cloudian to Glacier and Glacier Deep Archive. DME performs
data retrieval from Glacier in two steps – it is first restored from Glacier to AWS S3 and then downloaded from AWS
S3. An email notification is sent to the requesting user when the data has been restored to AWS S3.

Storage systems need to be replaced when they reach end-of-life or end of support, which requires the migration of
all data to a new system. Using iRODs to manage the metadata separately has enabled seamless data migration from
one storage provider to another. The virtual path presented by the data management layer and the metadata associated
with a file or collection remains the same. Only the configuration parameters representing the file’s physical location
are modified. The Migration REST API enables the transfer of data from and to Cleversafe, Cloudian, or AWS S3.
Further archiving to Glacier or Glacier Deep Archive can be performed by setting the appropriate lifecycle policies
on the S3 buckets. All calls to retrieve the data after the migration will automatically fetch it from the new storage
device, making the migration fully transparent to the user.

CONCLUSION

DME presently hosts over 4 Petabytes of data from 23 labs and cores across NCI, and the number is multiplying
rapidly. The infrastructure has been scaled significantly over the past year to accommodate the growing demand. As
the data continues to grow and DME gets leveraged by more and more stakeholders for data sharing and archival, the
focus is on implementing innovative approaches to improve the performance further while adding new capabilities
and enabling integrations with external platforms.

ACKNOWLEDGEMENTS

The authors would like to thank their colleagues at the Enterprise Information Technology group of the Frederick
National Laboratories for Cancer Research for setting up the storage and infrastructure for this platform.

We are grateful to the various research labs and core facilities across NCI who have onboarded to DME and provided
valuable feedback to improve the system.

49

8

This work has been funded in whole or in part with Federal funds from the National Cancer Institute, National Insti-
tutes of Health, under Contract No. 75N91019D00024. The content of this publication does not necessarily reflect the
views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial
products, or organizations imply endorsement by the U.S government.

REFERENCES

[1] FAIR Principles, https://www.go-fair.org/fair-principles
[2] iRODS, https://irods.org
[3] IBM Cloud Object Storage, https://www.ibm.com/cloud/object-storage
[4] Cloudian, https://cloudian.com/
[5] Amazon S3 Glacier Storage Classes, https://aws.amazon.com/s3/storage-classes/glacier/
[6] Amazon S3, https://aws.amazon.com/s3/
[7] Google Cloud Storage, https://cloud.google.com/storage
[8] Google Drive, https://www.google.com/drive/
[9] Globus, https://www.globus.org/
[10] Apache Tomcat, https://tomcat.apache.org/
[11] Apache ServiceMix, https://servicemix.apache.org/
[12] Oracle Database 19c, https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
[13] Jargon core libraries, https://github.com/DICE-UNC/jargon
[14] Lightweight Directory Access Protocol, https://ldap.com/
[15] One Identity – Safeguard for Privileged Sessions, https://www.oneidentity.com/products/one-identity-

safeguard-for-privileged-sessions/

50

iRODS as an Object Store for the Galaxy Platform
Kaivan Kamali, Nate Coraor, John Chilton,

Anton Nekrutenko

Penn State University
kxk302@gmail.com

Marius van den Beek

Galaxy Project

ABSTRACT

Galaxy platform (https://galaxyproject.org) is a computational workbench used by thousands of scientists across the

world to analyze large heterogeneous datasets (e.g., biomedical, genomics, and climate). Galaxy supports data

imports from the user's computer, by URL, and directly from many online resources, and supports a range of widely

used data formats, and translation between those formats. The Galaxy sites provide substantial CPU and disk space,

making it possible to analyze large datasets -- On usegalaxy.org, the median size of the datasets created by all users

per day is 8.12 TB. Galaxy enables scientists with no programming or system administration experience to perform

complex analysis. Galaxy workflows let users capture all the steps in an analysis, and their order, allowing the

analysis to be reproduced. Galaxy workflows and datasets can be shared, enabling transparent research. Finally,

Galaxy Training Network (GTN) offers hundreds of online tutorials provided by the Galaxy community.

Galaxy's ObjectStore is its data virtualization layer. It abstracts Galaxy's business logic for data persistence

technology. In other words, the ObjectStore makes it possible to store data on a wide-variety of persistence media

spanning from local storage to cloud-based solutions. Galaxy's ObjectStore currently supports disk, Network

Attached Storage (NAS), and various cloud-based backends, such as S3. In this work, we are extending Galaxy's

ObjectStore to add support for iRODS. We discuss the challenges we faced while implementing this feature and

how we addressed those challenges and our plans for the future.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

51

52

iRODS speaks SFTP: More ways to securely transfer
your data

Illyoung Choi, Edwin Skidmore, Nirav Merchant

CyVerse / University of Arizona
iychoi@arizona.edu

ABSTRACT

Secure File Transfer Protocol (SFTP) is a widely utilized and supported protocol for securely transferring data.

There are multiple client options that are open source and cross platform which include both command line and

desktop GUI’s (Graphical User Interface).

The need for compliance and data encryption during transfer is a strict requirement for many science domains that

are working with confidential data e.g. public health records, the use of SFTP based transfer and clients is well

known and validated, thus meeting multiple compliance needs.

Realizing this unmet need for secure and encrypted transfers for CyVerse users, our team decided to implement

SFTP access to iRODS. This approach complements the existing secure data transfer and authentication method

currently provided in iRODS via SSL and PAM authentication, which however are challenging to integrate into

existing services or research workflows for multiple reasons: requiring changes on iRODS server, firewall

configurations, and training users for complex client side installations of icommands.

In this talk, we introduce our work on adding iRODS as a backend storage option for SFTPGo

(https://github.com/drakkan/sftpgo) utilizing the Go iRODS library developed at CyVerse

(https://github.com/cyverse/go-irodsclient). We also redesigned its public-key authentication on top of iRODS Proxy

Authentication, thus avoiding users embedding passwords in their scripts and automation and relying on key based

authentication. The system is easy to deploy and has been validated with popular desktop SFTP clients such as

FileZilla, Cyberduck etc. Our deployment of the system showed 58.0 MB/s for uploading and 15.0 MB/s for

downloading when transferring a 1GB file. Compared with SFTPGo’s local storage, the iRODS integration to

SFTPGo showed reduced I/O performance due to remote data access – SFTPGo’s local storage showed 77.0 MB/s

for uploading and 64.0 MB/s for downloading. We plan to optimize the code to improve the I/O performance.

We expect the new system, SFTPGo for iRODS will allow researchers working with confidential data to readily

integrate this capability into their research workflows alongside familiar client tools while meeting some of their

compliance requirements.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

53

54

iRODS Delay Server Migration
Terrell Russell

Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

unc@terrellrussell.com

Kory Draughn
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

korydraughn@renci.org

ABSTRACT

The iRODS Delay Server can now be safely moved from one iRODS server to another without requiring a restart.

This paper describes the requirements, the design goals, the algorithm, the implementation, and the e↵ects of this

new functionality.

Keywords

iRODS, delay rules, delay server, migration

DELAY QUEUE

The iRODS platform provides powerful data management capabilities through the combination of storage technol-

ogy abstraction (via resource plugins), data discovery (via metadata), and policy enforcement (via the rule engine

framework). The rules allow taking action on data, based on the metadata (and any other available inputs). iRODS

policies (rules) can be fired in one of three ways:

1. now (upon request)

2. now (upon action)

3. later (via delay())

The iRODS Delay Server (irodsDelayServer), formerly known as the Rule Execution Server (irodsReServer), is the

mechanism provided by iRODS to run rules at a later time than when they are enqueued (option 3 above). iRODS

rules can be enqueued via delay() to execute at a later time. Any rules that are queued persist in the iCAT database

and are processed by the irodsDelayServer in a priority order. The irodsDelayServer sleeps most of the time, but

spawns an irodsAgent every 30 seconds (by default) to check the Delay Queue for any delayed rules that need to be

run.

This paper will discuss the architecture of the iRODS Delay Server in iRODS 4.3.0 and the process by which the

iRODS Consortium arrived at this design and implementation.

DELAY SERVER ARCHITECTURE

The iRODS 4.3.0 Delay Server Architecture is the culmination of design, preparation, and incorporation of smaller

features for more than four years. 4.2.4 was released in 2018 while the first changes discussed here were included in

4.2.5 in 2019.

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Authors retain copyright.]

1

55

Figure 1. iRODS 4.3.0 Delay Server Architecture, incorporating updates from 4.2.5 to 4.3.0

4.2.5

iRODS 4.2.5 included updates that fixed the delay queue from being blocked by long-running rules (issue 4250 [1]).

It also moved from processing rules directly from the catalog to holding an in-memory set of rules that had been

fetched via query and then processed with fewer round trips to the database. This allowed a more e�cient use of

cores within a single machine to process the queue of delayed rules. In addition, the entire delay server itself was

refactored to use threads instead of individual processes (issue 4251 [2]), reducing the memory footprint (issue 3782

[3] and issue 4266 [4]) and allowing reuse of some data structures.

The addition of the in-memory set required a new advanced setting named maximum_size_of_delay_queue_in_bytes.

This gave the administrator control over how much memory is allocated to running the delay server. As subsequent

queries are executed to pull rules from the catalog, if they do not fit into this in-memory set, then they are discarded

until enough rules have been executed and there is room for additional rules to be added.

4.2.8

iRODS 4.2.8 included a refactoring of the delay server binary itself to use the newly available query processor (issue

4430 [5]). This reduced the length, redundancy, and complexity of the delay server by calling purpose-built library

code. The delay server had been a full copy of the iRODS server source, which was wasteful of memory and required

any bugfixes to be applied in two locations.

2

56

4.2.9

iRODS 4.2.9 included a change in location where the delay rule contexts were stored (issue 3049 [6]). Prior to 4.2.9,

delay rule context was stored on the disk of the machine running the delay server at the time of enqueuing. A new

text-like column was added to the R_RULE_EXEC table, namely exe_context of type text (PostgreSQL), longtext

(MySQL), or clob (Oracle). By moving the context into the database, it separated the enqueuing machine from the

execution machine. This allowed the delay server to be a di↵erent machine, if desired, at a later time.

4.3.0

iRODS 4.3.0 included two additional changes that allowed the delay server to be moved from one machine to another

within a zone.

As part of the algorithm (discussed in a later section), the iRODS server must now regularly check to see if it is

designated to run the delay server. There were other items that required regular work in the server, so it was decided

to implement a cron-like facility within the iRODS server for these tasks.

One of the use-cases that was presented during discussion with the community included the ability to run a large

number of concurrent delay rules at the same time, potentially on di↵erent hosts. To solve this need to scale up the

processing of delay rules, we added an admin-defined list of eligible executors (servers) which could receive delay rules

and context and run them in a distributed manner. To get this behavior by default, we also implemented an implicit

remote() call (issue 4429 [7]) when processing the in-memory set which would send rules to a selected member of the

list of executors (for now, in a round robin, or sequential, manner). The default and upgrade behavior is to have an

empty list of executors which will use the local server as the only executor.

DESIGN GOALS

The sections above describe the work that was necessary to prepare for a future with a delay server migration

algorithm running. The following design goals were defined through community discussion and brainstorming. There

were four main goals.

1. No irodsServer restarts required. There are very large deployments under continuous load and a restart would

be very disruptive, and probably require a maintenance window. This is unacceptable if a single delay server

unexpectedly going away could cause the same disruption.

2. No double spends. Only one irodsDelayServer can be running in a particular Zone at any moment as it is the

one pulling enqueued rules from the catalog, executing them, and then removing them from the catalog. This is

paramount for ensuring organizational policy is followed, as a delay rule shall not be executed more than once.

3. Hands-free migration in case of disaster. If the irodsDelayServer is not coming back (the machine it is

running on is dead or has been disconnected), then another machine in the Zone should be promoted to run the

irodsDelayServer without any new action from the administrator.

4. Visibility. The delay server migration process should have as few moving parts and controls as possible, making

it easy to interrogate and debug for the administrator.

These four elements led to the following approach.

APPROACH

The following three operational decisions were made to satisfy the design goals.

1. Use the transactional database to store zone-wide information. This provides a single source of truth and allows

for confidence that all servers can act on the same information.

3

57

2. Split roles of leader and successor. To allow for the asynchronous nature of multiple servers agreeing on their

duties as assigned, splitting the leader from the successor allows each server to run appropriate code and make

correct decisions.

3. Run an identical algorithm on all iRODS servers. Each server is responsible for their own behavior but together,

they provide a predictable, consistent response during a migration event.

The roles are designated as zone-wide settings in the catalog in the R_GRID_CONFIGURATION table.

namespace option_name option_value

delay_server leader <hostname>

delay_server successor <hostname>

Table 1. New configuration options

DEMONSTRATION

The following sequence of administrator shell commands shows the interrogation of the delay server status from

the catalog, the setting of the new delay server, and then watching as the values change as the servers execute the

algorithm and perform a clean delay server migration.

$ hostname

05f4be918c0f

$ iadmin get_delay_server_info

{

"leader": "other.server.example.org",

"successor": ""

}

$ iadmin set_delay_server $(hostname)

$ iadmin get_delay_server_info

{

"leader": "other.server.example.org",

"successor": "05f4be918c0f"

}

$ iadmin get_delay_server_info

{

"leader": "05f4be918c0f",

"successor": ""

}

Demonstrated are the two new iadmin subcommands, get_delay_server_info and set_delay_server.

The help text for these two subcommands are as follows:

$ iadmin h get_delay_server_info

4

58

get_delay_server_info

Prints information about the delay server as JSON.

This command allows administrators to identify which server is running the

delay server and if the delay server is being migrated.

This information is retrieved from the R_GRID_CONFIGURATION database table.

Example Output:

{

"leader": "consumer-1.irods.org",

"successor": ""

}

$ iadmin h set_delay_server

set_delay_server HOSTNAME

Set the delay server for the local zone in R_GRID_CONFIGURATION.

The hostname entered will be saved as the ’successor’.

Each iRODS server will periodically check the catalog to determine

if it should promote itself to be the delay server for the local zone.

This mechanism allows for graceful delay server migration without downtime.

ALGORITHM

This algorithm is designed to run regularly on all servers in a zone. It is in charge of starting and then stopping a

local instance of the irodsDelayServer.

if self == leader

if successor defined and not self

gracefully finish and exit

else

if necessary, start irodsDelayServer

else if self == successor

run health check on leader

if leader is not running

promote self to leader in iCAT

else

save health stats

else

if necessary, gracefully finish and exit

There are three roles a particular server can find itself in, leader, successor, or neither.

1. Leader.

5

59

If the server running the algorithm checks the catalog and determines that the designated leader hostname

matches its own hostname, then the first stanza is executed. If there is a successor designated in the catalog

as well, and it is not also the same as this server’s hostname, then a migration has been requested by the

administrator and it is time for this server to request the local irodsDelayServer complete any delay tasks that

are already being executed and then gracefully exit.

Otherwise, if the server is not currently running an irodsDelayServer, then it should start a local instance.

2. Successor.

If the check of the catalog produces a hostname for successor that matches the local hostname, then it becomes

the job of this server to monitor the leader for signs of health. If the leader is still running its own irodsDelay-

Server (meaning that it has not yet gracefully exited), then the successor should save into the catalog that it

has checked once and plans to try again on the next check. If the leader is not running (or if the health check is

deemed to have failed because of repeated non-response), then the successor promotes itself to leader within the

catalog and returns. The next time through the algorithm this server will find it matching the ’leader’ condition

(above).

3. Neither.

If the check of the catalog produces no match for either leader or successor with the local hostname, then this

server should tell any local irodsDelayServer to complete any work it has and then gracefully exit.

The two-phase promotion of a server to ’leader’ in this algorithm should behave in the following scenarios:

1. Servers behaving as expected.

Only the leader will ever start an irodsDelayServer. If requested, the leader will let go as soon as it has

completed its current work. All other servers will do the same if not designated as the leader. The successor

will not promote itself until the leader has let go.

2. The current leader is non-responsive.

If the current leader has su↵ered an unrecoverable error or has been disconnected, then the successor performing

a series of health checks can promote itself to leader. Only the successor can promote itself to leader.

3. The current leader has long-running jobs.

The health check by the successor is implemented by asking for the PID of the irodsDelayServer on the leader.

If the leader continues to answer that it is healthy, and just continuing to process its current rules, then the

successor will simply wait and check again.

4. Fast switching of the successor by the administrator.

If an administrator has changed the successor after the migration has begun, but before the entire algorithm has

settled on a new leader and started the new irodsDelayServer, then as long as the checks on each machine are

running in a well-spaced manner, then two servers should never decide they are both the leader at the same time.

For additional confidence, a ’leader’ confirmation may be performed prior to each time an irodsDelayServer

retrieves new delay rules to execute.

LEARNED ALONG THE WAY

There were a few things that proved themselves tricky along the way to arriving at an implementation that satisfied

the vision.

1. Database credentials.

The decision to have the main irodsServer, via the cron-like facility, reach out and contact the database

directly to gather the information about the leader and successor meant that every server has to have database

credentials in their server_config.json file. This will be remedied in later releases.

6

60

2. Control plane as process / Blocking ourselves.

The health check required by the successor to ask whether the current leader is still running an irodsDe-

layServer meant that a network request was sent but it could not be answered due to the main loop of the

irodsServer waiting to fork an Agent to answer the request. This required moving the cron-like facility into

its own thread, similar to the control plane, and unblocking the main server from answering incoming requests.

3. Who is the parent process?

In learning about the control plane above, we learned to write down a PID-file to help other processes be able

to identify the parent process and answer whether the irodsDelayServer was still running.

FUTURE WORK

This work is complete and functional and included as part of iRODS 4.3.0. We expect to learn a few things once

deployments are in the real world, however, the following items are optimizations we have already identified and plan

to include in future releases.

1. Remove database credentials requirement

This requirement is a short-term limitation and will be removed relatively soon.

2. Detect and skip a redundant implicit remote()

The current implementation is wrapping all calls in the remote() function. We expect that a simple check to

compare the selected remote host against the current hostname will allow skipping a redundant call to remote().

3. Advanced setting for sleep time between migration algorithm runs

As shipped in 4.3.0, the delay server migration algorithm is set to execute every five seconds. We were trying to

make sure that this new feature would be responsive enough to experimenting administrators before providing a

configuration. We plan to introduce a new advanced setting for this value, including the possibility of configuring

the server to never run the algorithm.

CONCLUSION

This paper discussed the design, implementation, and future work around the new delay server migration algorithm

in iRODS 4.3.0. We expect this work to feature prominently in production workloads as many asynchronous tasks

are being enqueued for later execution.

REFERENCES

[1] iRODS GitHub Issue 4250. ”irodsReServer blocks on in-progress jobs”

https://github.com/irods/irods/issues/4250

[2] iRODS GitHub Issue 4251. ”Use thread pool in rule execution server”

https://github.com/irods/irods/issues/4251

[3] iRODS GitHub Issue 3782. ”delayed rule queue processing slows down as the queue length grows”

https://github.com/irods/irods/issues/3782

[4] iRODS GitHub Issue 4266. ”Having at least 256 rules in the queue prevents new rules from being processed”

https://github.com/irods/irods/issues/4266

[5] iRODS GitHub Issue 4430. ”Refactor delay server as an irods::query processor”

https://github.com/irods/irods/issues/4430

[6] iRODS GitHub Issue 3049. ”Move packedReis to db, add delay server boolean to server config.json”

https://github.com/irods/irods/issues/3049

[7] iRODS GitHub Issue 4429. ”Add implicit remote() to delayed rule execution”

https://github.com/irods/irods/issues/4429

7

61

62

Towards the FAIRification of lab-data
Martin Schobben

Utrecht University
schobbenmartin@gmail.com

ABSTRACT

Data management and subsequent downstream recycling of data is a primer for future innovation. Solutions for

better data management infrastructures, such as formalized in the FAIR data guiding principles, are not yet

implemented in most academic laboratories populated by a range of analytical instruments. Each of these machines

often has their own vendor supplied software suite for data processing and diagnostics, and thus prevents

transparency of these workflows. This so-called "vendor lock-in" further results in various data models which are

not easily integrated.

In this talk I want to share some visions and perspectives on a strategy that could aid data collection and

harmonization in laboratories. The ultimate aim of the project is to develop an universal tool that can be easily

integrated in a day-to-day workflow of a scientist (using Python or R) as well as operating as a sub-system of

iRODS for storage and downstream recycling of lab-data.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

63

64

iRODS S3 Resource Plugin: Glacier Support
Justin James

Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

jjames@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

unc@terrellrussell.com

ABSTRACT

The iRODS S3 Resource Plugin has been extended to honor the Glacier semantics of an S3 storage system including

reacting appropriately to responses that indicate the data requested will be available later. This paper describes the

implementation details and future work.

Keywords

iRODS, S3, glacier, storage

INTRODUCTION

The iRODS S3 Resource Plugin has been steadily improving over the years and growing new features, including

cacheless behavior (removing the need to have it be configured as a child of a compound resource) [1], detached

mode (which removes the need to redirect any S3 request to a particular iRODS server to service that request)[1],

and direct streaming (allowing multipart put and get directly into the S3 layer) [2]. This year’s update includes

new support for Glacier semantics, similar to Amazon’s own storage class behavior, but available in multiple other

vendor’s S3-compatible storage o↵erings.

OVERVIEW

The S3 storage service provided by Amazon o↵ers multiple di↵erent storage classes [3]. The Glacier storage classes

are the archive tiers for S3. While these classes and this interface and behavior are defined by the Amazon o↵ering,

other vendors have implemented the same. This new iRODS solution has been tested against Amazon and Fujifilm’s

Object Archive [4] product at this time.

The behavior is transparent (as compared to a regular iRODS transfer) except for a flag that is needed to define the

storage class. This flag is part of the request and is required to signal the intent of the caller.

When downloading data, the behavior is asynchronous, except for storage classes that are deemed ”instant retrieval”.

This is a vendor-specific definition and should be investigated and documented for any particular product and deploy-

ment. The iRODS S3 storage resource does not know what this definition may mean for any particular S3-compatible

storage that may be configured for it to use.

GLACIER SUPPORT ON OBJECT READ

Adding Glacier support was relatively straightforward. Prior to reading an object from the iRODS namespace stored

in an S3 resource, a HeadObject operation must be called to ascertain if the object is currently in archive within

the S3 service. If the object is determined to be in the archive, then the object is requested and restoration will be

scheduled. Otherwise, the object is returned immediately.

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Authors retain copyright.]

1

65

Determining the status of the object is through the inspection of the x-amz-storage-class header:

• If it exists and is either GLACIER or DEEP_ARCHIVE, inspect the x-amz-restore header:

– If x-amz-restore has ongoing-request=true, then a restore has already been scheduled.

Return REPLICA_IS_BEING_STAGED error with message indicating the object is in process of being restored.

– If x-amz-restore has ongoing-request=false, then the object has already been restored.

Proceed as normal.

– If x-amz-restore does not exist, the object is in archive. Call RestoreObject and return

REPLICA_IS_BEING_STAGED with message indicating the object is being queued for restoration.

• If x-amz-storage-class header does not exist or is not GLACIER or DEEP_ARCHIVE, the object can be immediately

retrieved. Proceed as normal.

RESTORING AN OBJECT FROM ARCHIVE

When it is determined that an object be restored from the archive, the RestoreObject operation is requested. To

support this operation, two new resource context configuration settings have been introduced to the iRODS S3

resource plugin, S3_RESTORATION_TIER and S3_RESTORATION_DAYS. The use of these two configuration settings give

the administrator full control over the behavior of the object restoration.

S3_RESTORATION_TIER - This is the value sent in the <tier> tag when RestoreObject is called. The values are not

case sensitive. Valid values are ’Standard’, ’Bulk’, and ’Expedited’. The restoration tier, in combination with the

storage class, defines the length of time needed to complete the restoration. The following are the restoration times

for Amazon’s S3 service:

Glacier Deep Archive

Expedited 1-5 minutes Not Allowed

Standard (default) 3-5 hours Within 12 hours

Bulk 5-12 hours Within 48 hours

Note: RestoreObject is neither necessary nor allowed for objects stored in Glacier_IR.

S3_RESTORATION_DATS - The number of days the object will be restored. The default in the S3 plugin is 7. (According

to Amazon, this is overridden if you have the bucket set up with lifecycle configuration.)

GLACIER SUPPORT ON WRITE OR COPY

For writing into the S3 resource, a single new resource context setting named S3_STORAGE_CLASS is provided. It is

used to define the destination storage class for uploaded data objects and one of four valid values must be set (these

are not case-sensitive):

• STANDARD - default

• GLACIER

• DEEP_ARCHIVE

• GLACIER_IR - Glacier Instant Retrieval

If defined, this setting is sent in the x-amz-storage-class header for PutObject and CopyObject.

2

66

This header may also have the following values which are either not relevant for Glacier support or have not yet been

implemented:

• STANDARD_IA - Standard Infrequent Access

• ONEZONE_IA - One Zone Infrequent Access

• INTELLIGENT_TIERING

• OUTPOST

CHANGES TO LIBS3

The libs3 library did not have support for Glacier and Deep Archive at the beginning of this work. The iRODS fork

of the libs3 library has been updated and the following three changes have been incorporated [5]:

• Implemented the RestoreObject API

• Added the ability to set x-amz-storage-class header on PutObject and CopyObject

• Added the ability to read x-amz-storage-class and x-amz-restore headers from the HeadObject header

We are planning to open a pull request to the upstream libs3 library with these changes.

EXAMPLE GLACIER SETUP AND FILE RETRIEVAL

The following is an example of the configuration necessary to use the new Glacier behavior.

This configuration creates a resource that places files in Glacier, performs expedited restorations, and restores for 1

day.

$ iadmin mkresc s3resc s3 ‘hostname‘:/justinkylejames-irods1/amazons3resc \

"S3_DEFAULT_HOSTNAME=s3.amazonaws.com;S3_AUTH_FILE=/var/lib/irods/amazon.keypair;

S3_REGIONNAME=us-east-1;S3_PROTO=HTTP;HOST_MODE=cacheless_attached;

S3_STORAGE_CLASS=Glacier;S3_RESTORATION_TIER=Expedited;S3_RESTORATION_DAYS=1"

Creating resource:

Name: "s3resc"

Type: "s3"

Host: "ce61bbc3beec"

Path: "/justinkylejames-irods1/amazons3resc"

Context: "S3_DEFAULT_HOSTNAME=s3.amazonaws.com;S3_AUTH_FILE=/var/lib/irods/amazon.keypair;

S3_REGIONNAME=us-east-1;S3_PROTO=HTTP;HOST_MODE=cacheless_attached;S3_STORAGE_CLASS=Glacier;

S3_RESTORATION_TIER=Expedited;S3_RESTORATION_DAYS=1"

To begin, create a local file (test.txt) and then put it into iRODS onto the newly created and configured S3 storage

resource.

$ echo test123 > test.txt

$ iput -R s3resc test.txt

Next, try to get the object. The error code and error message lets the user know that the object is in the Glacier

archive, has been queued for restoration within the S3 fabric, and to come back again and try to retrieve the file later.

3

67

$ iget test.txt -

remote addresses: 172.17.0.2 ERROR: getUtil: get error for - status = -721000 REPLICA_IS_BEING_STAGED

Level 0: [-] /github/irods_resource_plugin_s3/s3/s3_transport/src/s3_transport.cpp:208:irods::error

irods::experimental::io::s3_transport::restore_s3_object(const std::string &,

libs3_types::bucket_context &, const unsigned int, const std::string &, const std::string &) :

status [REPLICA_IS_BEING_STAGED] errno [] --

message [Object is in GLACIER and has been queued for restoration. Try again later.]

Then, try to get the object a second time. The error code returned is the same as before, since the object is still not

yet available, but the error message reflects the slightly di↵erent situation within the S3 fabric.

$ iget test.txt -

remote addresses: 172.17.0.2 ERROR: getUtil: get error for - status = -721000 REPLICA_IS_BEING_STAGED

Level 0: [-] /github/irods_resource_plugin_s3/s3/s3_transport/src/s3_transport.cpp:133:irods::error

irods::experimental::io::s3_transport::handle_glacier_status(const std::string &,

libs3_types::bucket_context &, const unsigned int, const std::string &,

irods::experimental::io::s3_transport::object_s3_status, const std::string &) :

status [REPLICA_IS_BEING_STAGED] errno [] --

message [Object is in GLACIER and is currently being restored. Try again later.]

Finally, wait a few minutes and attempt to retrieve the object again. The file is returned cleanly without any errors.

$ iget test.txt -

test123

STATUS AND FUTURE WORK

The iRODS S3 Resource Plugin has learned the Glacier semantics and has been partially released. Restoration from

Glacier was added in 4.2.11.0 and included in 4.3.0.0.

The next release (4.3.0.1) will include support for setting the storage class on PutObject and CopyObject which will

work with ’Deep Archive’ for the put, get, and copy operations within the iRODS namespace.

After that, we expect that support for the intelligent tiering storage class should be trivial but this has not yet been

implemented or tested.

Additionally, we could write a server-side iRODS rule to read metadata on an atomic put and select the storage class

dynamically for object level control.

REFERENCES

[1] James, J., Russell, T., Coposky, J.: iRODS S3 Resource Plugin: Cacheless and Detached Mode. pp65-71. 2019

iRODS User Group Meeting. (2019)

[2] James, J., Draughn, K., Coposky, J., Russell, T. : S3:TNG - iRODS S3 Resource Plugin with Direct Streaming.

pp15-24. 2020 iRODS User Group Meeting. (2020)

[3] Amazon S3 Glacier storage classes. https://aws.amazon.com/s3/storage-classes/glacier/

[4] Fujifilm Object Archive. https://datastorage-na.fujifilm.com/object-archive/

[5] James, J.: libs3 - Add glacier support. https://github.com/irods/libs3/issues/16

4

68

iRODS and Globus Deployment at the VSC
Vas Vasiliadis

University of Chicago
vas@uchicago.edu

Ingrid Barcena Roig

KU Leuven
ingrid.barcenaroig@kuleuven.be

ABSTRACT

We will provide a brief overview of the Globus service and how it integrates with iRODS for secure, reliable file

transfer and sharing from diverse storage systems. We will also describe how the VSC is planning to deploy and use

the Globus for iRODS connector as part of the member institutions' data management infrastructure.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

69

70

An Update on SODAR: the iRODS-powered System for
Omics Data Access and Retrieval

Mikko Nieminen, Manuel Holtgrewe, Mathias Kuhring, Oliver Stolpe, Dieter Beule

Berlin Institute of Health at Charité
mikko.nieminen@bih-charite.de

ABSTRACT

In life science research, an ever-growing number of high-throughput omics assays in the areas of genomics,

proteomics, metabolomics and transcriptomics is creating challenges for data management. These challenges include

handling large amounts of data, modeling complex experimental designs for studies, making data accessible and

enabling collaboration between multiple institutes.

We present an update to SODAR (System for Omics Data Access and Retrieval), which is our effort to fulfill these

requirements. SODAR is specialized software for combining the modelling of complex studies with storage of large

bulk data. To facilitate data management workflows, SODAR provides project-based data encapsulation and access

control, web-based graphical user interfaces, programmatic access via REST APIs as well as various tools for

managing data in research projects.

SODAR is based on open-source solutions. The system uses iRODS for bulk data storage, with a transaction

subsystem facilitating complex data transfer operations with validation and rollback capabilities. Davrods is used for

web access to files and integrations with third party software. Graphical user interfaces and APIs are implemented in

Python using the Django framework. The data model is based on the ISA-Tab standard, with a browser and editor

component for ISA-Tab studies implemented in Vue.js. Core project management functionalities and related tools

are available as a separate reusable library, which allows for creating other data management systems sharing

common project access control structures.

SODAR was previously presented in the iRODS user group meeting in 2019. Since then, major development has

been done regarding, e.g., metadata editing, iRODS file management and REST APIs. We will demonstrate a use

case with an emphasis on these new features and updates.

SODAR is under continuous development and has been deployed in our institutes for several years. It is currently

used in over 300 research projects and stores approximately 350 terabytes of data. The system is publicly available

as open source with a permissive license.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

71

72

iRODS Python/PRC based portal and tools for active
data support in research contexts

Paul Borgermans

KU Leuven
paul.borgermans@kuleuven.be

ABSTRACT

The main work is a modular web portal that can be tailored for various needs/use cases. The focus is on "active

data" in research data management solutions using iRODS. For manual / ad hoc manipulation of metadata,

(hierarchical) schemas can be defined which are rendered as user friendly forms/templates. Further integration of

external tools to support specific workflows such as metadata discovery. The software stack is kept simple and uses

the Flask web framework, bootstrap 5 UI elements and vanilla javascript.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

73

74

iRODS Development and Testing Environments (v8)
Alan King

Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

alanking@renci.org

Terrell Russell
Renaissance Computing

Institute (RENCI)

UNC Chapel Hill

unc@terrellrussell.com

ABSTRACT

iRODS Build and Test continues to evolve. Testing a distributed system is hard and this paper describes the eighth

generation of our e↵orts to do it well. This paper includes containers, Python, and no Groovy.

Keywords

iRODS, testing, development, framework, python

INTRODUCTION

The iRODS Build and Test infrastructure has now been around for more than a decade and continues to evolve as

additional features and coverage are required. The iRODS Team has worked to easily and flexibly deploy di↵erent

iRODS topologies and e�ciently exercise the numerous scenarios that a robust iRODS installation can service.

In addition to writing and maintaining a growing lists of tests, seeing those tests pass builds confidence in the changes

developers make to software, asserting the correctness of the changes and of the entire system.

Providing an easy and consistent framework in which to run these tests, and see their results, builds confidence for

the entire community.

This eighth version (v8) is the best we’ve done so far.

HISTORY

The following listing is an overview of the history of the various Build-and-Test Systems for iRODS. Each shows a

flow of technologies used to provide confidence in iRODS at the time. Over the years, this series of flows also became

the gatekeeper for whether iRODS was ready for a new release.

v1 - July 2011: Python → Node.js → RabbitMQ → Celery → Eucalyptus [1]

v2 - October 2012: Python → Node.js → ssh → OpenStack

v3 - January 2013: Hudson → Python → OpenStack

v4 - October 2013: Hudson → Python → vSphere long-running VMs [2]

v5 - Spring 2015: Jenkins → Python → Ansible → zone bundles → vSphere dynamic VMs [3]

v6 - Spring 2017: Jenkins → Python → vSphere dynamic VMs → build/test hooks [4]

iRODS UGM 2022 July 5-8, 2022, Leuven, Belgium
[Authors retain copyright.]

1

75

v7 - Summer 2019: Docker → Jenkins → Python → Docker → build/test hooks [5]

v8 - Summer 2022: Python → Docker → build/test hooks

LIMITATIONS OF THE PAST

The most recent change to the system is the removal of Jenkins. Jenkins [6], the successor to Hudson, is a java-based

automation and continuous integration server that was very helpful in being the place where ’jobs’ were saved and

managed and run from 2013 to 2022. However, there were a few limitations of that approach that we hoped to

overcome with v8.

First, since the move to a Docker-based, every-developer-runs-their-own-system approach with v7, the requirement

that every developer must now also be an administrator of their own Jenkins became a bit heavyweight and onerous.

Second, the existing structure of Jenkins is pretty inflexible with its notion of jobs and servers and a history of each

job over time. We found that we wanted more granular insight across types of inputs to those jobs, rather than just

by job name itself.

Third, the combinatoric explosion of variables that we would like to test had become too di�cult to maintain in

a simple list of Jenkins jobs. If we realized we wanted to test an additional variable, our list of manually defined

and curated jobs (in Groovy!) could multiply by the number of enumerated values of the new variable. This was

unsustainable and we found ourselves considering writing Python wrappers to generate these Groovy jobs.

Additionally, the test results were captured in the Jenkins namespace and were hard to extract in a flexible manner.

Any packages created needed to be extracted and kept in a parallel namespace taking up room in our mental model

and additional disk space on individual developers’ machines.

Lastly, also related to disk space, since every Jenkins job was building things from scratch, we were dealing with a

Docker image explosion - there was one tag per test run in the system - leading to thousands and thousands of nearly

identical images. There were a number of disk full events on the development team which were always surprisingly

tricky and annoying to recover from.

Stepping back, we realized our needs both as developers and project maintainers were not being met satisfactorily

and we needed something better.

iRODS BUILD-AND-TEST SYSTEM (V8)

After a few whiteboard sessions, we determined that we really wanted to separate the building of packages (solving

our Docker image explosion problem) from the running of tests (solving our too-many-Jenkins-jobs problem). We

needed a consistent flow from source code to built packages to test results (see Figure 1).

We also were looking to provide a more consistent learning and development environment for interns and new hires.

This led us to a very straightforward replacement of the initial generic flow with two stages, development and testing.

Each stage is now represented by its own standalone git repository with clean inputs and outputs as seen in Figure 2.

DEVELOPMENT ENVIRONMENT

The new iRODS development environment git repository [7] is designed to provide the machinery to easily build

the iRODS server, its various plugins, and the required external dependencies (externals) for all supported operating

systems as well as a selection of debugging tools. The abstraction layer to provide this on a single machine is through

the use of container technology, currently handled by Docker.

The containers build from code that is local to the host machine and produce local packages on the host machine.

All of the build tools and processes are run within the containers and do not otherwise a↵ect the host environment

2

76

Figure 1. Generic Build-and-Test Workflow Figure 2. Workflow with Repositories

or filesystem.

The advantages to this approach are numerous when compared to VMs or multiple build machines. First, there is

less network tra�c to and from the code repositories (in our case, largely GitHub). Second, local source files allow

the developer to use their preferred coding environment and tooling which increases speed and confidence. Third, the

container-technology’s build cache allows for faster iteration between build and test cycles. Lastly, having a consistent

process means that the development e↵orts look very similar to the release process - the same machinery that builds

our packages for development and testing is now used to build the packages that are released to everyone else.

An example usage of the iRODS development environment is as follows:

$ docker run --rm \

-v ${irods_sourcedir}:/irods_source:ro \

-v ${irods_builddir}:/irods_build \

-v ${icommands_sourcedir}:/icommands_source:ro \

-v ${icommands_builddir}:/icommands_build \

-v ${irods_packagedir}:/irods_packages \

-v ${externals_packagedir}:/irods_externals_packages:ro \

irods-core-builder:${PLATFORM}-${VERSION}

The above example runs an irods-core-builder for a particular ${PLATFORM} and ${VERSION}. The three read-only

(ro) volume mounts specify the location of the local source code for the iRODS server (${irods_sourcedir}), the

iRODS iCommands (${icommands_sourcedir}), and the external dependency packages already built and gathered

for this platform and version (${externals_packagedir}). The other three volume mounts specify the locations

of two build directories for the build artifacts (${irods_builddir} and ${icommands_builddir}) and the location

where the newly built packages will be deposited (${irods_packagedir}).

TESTING ENVIRONMENT

The new iRODS testing environment git repository [8] is designed to provide the machinery to test various iRODS

configurations. The python scripts currently leverage the functionality of Docker Compose to easily stand up one or

more iRODS zones, configure them, federate them, and then run tests and gather the results. Again, through the use

of container technology this happens on a single host machine.

3

77

These local scripts execute the issued commands in long-running containers. They install and configure local (newly

built) or released packages and generate local test results. The scripts have options to skip the testing which allows a

developer to quickly have access to a running zone from their latest built packages for manual inspection and testing.

The first advantage of this approach is precision control for running various tests in parallel since multiple independent

containers can run independent zones to avoid any interaction or dependencies. A second related advantage is

that this approach provides a convenient way to reproduce reported issues because of the consistent, reproducible

configurations. This also provides a consistent process for both bench (manual) and automated testing.

The current list of scripts available in the testing repository:

• stand it up.py - stand up a zone with multiple servers

• federate.py - stand up and federate multiple zones

• run core tests.py - run iRODS server tests

• run unit tests.py - run unit tests for iRODS libraries

• run topology tests.py - run tests on a multi-server zone

• run federation tests.py - run tests in federated zones

• run plugin tests.py - run tests for iRODS plugins

An example usage of running the core tests is as follows:

$ python run_core_tests.py \

--project-directory projects/ubuntu-20.04/ubuntu-20.04-postgres-10.12 \

--irods-package-directory ~/hdd/builds/irods_packages/4-3-stable/ubuntu-20.04 \

--concurrent-test-executor-count 4

The above example runs the core test suite with configuration details defined in the --project-directory located in

the relative path of projects/ubuntu-20.04/ubuntu-20.04-postgres-10.12 with the binary packages found in the

--irods-package-directory of ~/hdd/builds/irods_packages/4-3-stable/ubuntu-20.04. The --concurrent-

test-executor-count of 4 instructs the script to stand up four concurrent identical zones, distribute the tests

across those four zones, and run the tests in parallel. As the tests complete, the log files and the test results are

copied back to the host machine. Once all tests are complete, the script stops the four zones and removes the running

containers.

The results of the fourth zone can be seen here:

results for [ubuntu-2004-postgres-1012_irods-catalog-provider_4]

passed tests:

[[30.0808]s] [test_collection_mtime]

[[837.2263]s] [test_iadmin]

[[59.8457]s] [test_ichmod]

[[13.3225]s] [test_ifsck]

[[58.9188]s] [test_ils]

[[8.9275]s] [test_imeta_help]

4

78

[[34.9601]s] [test_imv]

<snip>

[[28.2190]s] [test_quotas]

[[1081.7692]s] [test_resource_types.Test_Resource_CompoundWithUnivmss]

[[808.2622]s] [test_resource_types.Test_Resource_Passthru]

[[2091.9287]s] [test_resource_types.Test_Resource_Replication]

[[857.6486]s] [test_resource_types.Test_Resource_Unixfilesystem]

[[917.5663]s] [test_rulebase]

[[78.1721]s] [test_symlink_operations]

skipped tests:

failed tests:

return code:[0]

time elapsed: [7.345e+03]seconds ([2]hours [2.424]minutes)

All tests passed! :)

time elapsed: [10955.3559]seconds ([3]hours [2.5893]minutes)

==== end of test run results ====

The logs for this test run can then be found in the reported location:

2022-07-04 20:57:00,726 INFO - collecting logs

[/tmp/ubuntu-2004-postgres-10123x3tjb2r/ubuntu-2004-postgres-1012_be703715-7901-4a34-affa-10ebea651ff4]

FUTURE WORK

The next few steps for the iRODS Build and Test infrastructure are incremental. The container-based approach will

probably last for a while and progress will come from a few di↵erent areas, including automation, client testing, and

environmental reproduction and orchestration.

Since moving away from Jenkins, the automation of testing every commit has fallen away. Working to reproduce

the visibility of continuous integration is a near-term goal. Some progress has already been made, but it is not clear

whether building this from scratch will be worth the e↵ort.

Adding various iRODS clients to the testing infrastructure is an ongoing e↵ort as well. Most clients do not already

have their own test suites. Command line tools will be easy enough to write tests for, but GUIs will require additional

work.

The original design goal for the iRODS Zone Report was to provide a serialization format for a zone’s topology that

could be generated from an existing deployment as well as be handed to a tool for automatic deployment for testing

and issue reproduction. The format itself has proven useful but needs some modernization work for the 4.3 release

series.

SUMMARY

The eighth generation of the iRODS Build and Test infrastructure provides a cleaner slate for the iRODS Consortium

to build confidence and visibility around the core iRODS server and its plugins. It has already increased iteration

speed for the development team and can guarantee any released binaries come from the same machinery that shows

all the tests are passing.

5

79

REFERENCES

[1] Russell, T., Coposky, J., Brieger, L., Stealey, M.: Initial Enterprise iRODS Release. 2012 iRODS User Group

Meeting (2012). https://irods.org/uploads/2012/03/Russell-RENCI-EiRODS.pdf

[2] Russell T.: iRODS 4.0 - Build and Test. 2014 iRODS User Group Meeting (2014).

https://irods.org/uploads/2014/06/Terrell-iRODS-4.0-BuildAndTest.pdf

[3] Russell T., Keller, B.: iRODS Cloud Infrastructure and Testing Framework. 2015 iRODS User Group Meeting

(2015). https://irods.org/uploads/2015/06/RussellKeller-TestingFramework.pdf

[4] Russell, T., Gill, J.: iRODS Build and Test (part of the iRODS Technology Update). 2018 iRODS User Group

Meeting (2018). https://irods.org/uploads/2018/Russell-iRODS-Technology_Update-slides.pdf

[5] Russell, T., Gill, J.: iRODS Build and Test (part of the iRODS Technology Update). 2019 iRODS User Group

Meeting (2019). https://irods.org/uploads/2019/Russell-iRODS-UGM2019_Technology_Update-slides.pdf

[6] Jenkins. https://www.jenkins.io

[7] iRODS Development Environment. https://github.com/irods/irods_development_environment

[8] iRODS Testing Environment. https://github.com/irods/irods_testing_environment

6

80

Data: the final frontier. These are the voyages of the
Informatics Digital Solutions team at Sanger. Its five-
year mission: to migrate old data. To seek out new

features. To boldly go where no iRODS Zone has gone
before!

John Constable

Wellcome Sanger Institute
jc18@sanger.ac.uk

ABSTRACT

John Constable from the Informatics Support Group, part of the Informatics Digital Solutions team at Wellcome

Sanger Institute will talk about the past years work with iRODS, covering migrating 8PB of data, improving the

searching of 400 million items of metadata, deploying NFSRODS, switching to PostgreSQL, and adding the usual

few petabytes of storage.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

81

82

iRODS Client Library: Python iRODS Client 1.1.4
Daniel Moore

Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

dmoore@renci.org

ABSTRACT

This talk will cover the new work since 1.0.0 last year. This includes fixes for the XML protocol, connection reuse,

the anonymous user, ticket enhancements, and compatibility with iRODS talking directly to S3.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

83

84

iRODS Build and Packaging Update
Markus Kitsinger

Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

kitsinger@renci.org

ABSTRACT

The release of iRODS 4.3.0 has freed the main branch to begin a new journey. This talk will explore the noble goal

of making the iRODS source tree 'Normal and Boring' with regard to CMake modules, inclusion of dependencies,

packaging across different operating systems, and general good hygiene.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

85

86

Streamline-connecting data to interactive-apps in
CyVerse Discovery Environment via iRODS CSI Driver

Illyoung Choi, Sarah Roberts, Edwin Skidmore, Nirav Merchant

CyVerse / University of Arizona
iychoi@arizona.edu

ABSTRACT

Container technologies such as Docker etc. have seen widespread adoption in many disciplines for building

reproducible analysis workflows. The ephemeral nature of container-based workflows presents unique challenges

for providing data visibility and access from external data repositories. The CyVerse Discovery Environment (DE)

is a web workbench and a managed Kubernetes based container orchestration platform. DE allows researchers to

readily build customized apps utilizing Docker containers to perform their custom analysis with data stored in the

CyVerse Data Store (DS) which is based on iRODS.

DE stages data needed by the app to local storage where the container is running, and upon completion of the

analysis, new data is copied back to DS. This usage pattern is not intuitive for users, as scientific data is becoming

increasingly larger the local data staging method becomes more inefficient in terms of transfer time and local

storage. Additionally interactive applications such as Jupyter notebooks and Rstudio that support exploratory data

analysis (EDA), what data sets need to be staged are not known to the user while launching the container. To

overcome many of these limitations we have developed a new method that transfers data on-demand within the DE

using the Kubernetes-native storage interface, named the iRODS CSI Driver. This new method provides apps direct

data access to the DS, eliminating the need to copy data on local storage. The new method has been deployed in

production since January 2022.

In this talk, we demonstrate our work on integrating the iRODS CSI Driver to the DE and share how the CSI Driver

is configured within the DE. We also demonstrate new capabilities in the CSI Driver that were added to optimize

performance and ease integration. Lastly, we share issues encountered in production and how we fixed them.

The integration of iRODS CSI Driver to the DE enabled scientists to access the DS more conveniently without

limitations. Although the current CSI Driver shows reduced I/O performance compared to the previous staging

method, the benefits in user experience outweighed slight losses in data access performance.

iRODS UGM 2022, July 5-8, 2022, Leuven, Belgium

Author(s) retain copyright.

87

88

2 0 22 U s er G ro u p M eet i n g
L E U V E N , B e l g i u m

U S E R G R O U P M E E T I N G
2 0 2 2 P R O C E E D I N G S

P U B L I S H E D B Y T H E i R O D S C O N S O R T I U M

