
Kory Draughn
Chief Technologist
iRODS Consortium

June 13-16, 2023
iRODS User Group Meeting 2023

Chapel Hill, NC
1

Overview

What is GenQuery2?
GitHub Repository
General Features
Components and Examples

API Plugin
Rule Engine Plugin
iCommand

Remaining Work
Future Plans
Community Engagement

2

What is GenQuery2?

An experimental redesign (and implementation) of the iRODS GenQuery parser.

This project exists as a means for allowing the iRODS community to test the
implementation and provide feedback so that the iRODS Consortium can produce a
GenQuery parser that is easy to understand, maintain, and enhance all while
providing a syntax that mirrors standard SQL as much as possible.

Once stable, the code will be merged into the iRODS server making it available with
future releases of iRODS.

3

GitHub Repository

The repository contains all source code for generating a package
containing the following ...

An API Plugin
A Rule Engine Plugin
An iCommand

Everything discussed in this talk can be found in the repository.

https://github.com/irods/irods_api_plugin_genquery2

4

https://github.com/irods/irods_api_plugin_genquery2/issues/3

General Features

Enforces the iRODS permission model
Logical AND, OR, and NOT
Grouping via parentheses
SQL CAST
SQL GROUP BY
SQL aggregate functions (e.g. count, sum, avg, etc)
Per-column sorting via ORDER BY [ASC|DESC]
SQL FETCH FIRST N ROWS ONLY (LIMIT offered as an alias)
Metadata queries involving different iRODS entities (i.e. data objects,
collections, users, and resources)
Operators: =, !=, <, <=, >, >=, LIKE, BETWEEN, IS [NOT] NULL
SQL keywords are case-insensitive
Federation is supported

5

Components and Examples - API Plugin

Wraps the parser and makes it available to all clients.

Interface Details

API Number
1000001 (may change in the future)

Input Parameters
query_string - The GenQuery2 string.
zone - The name of the zone to execute the query in.
sql_only - An integer instructing the plugin to return the generated SQL.

Output
On success, returns a JSON string representing the resultset
On failure, returns an iRODS error code

Defaults to returning a max of 16 rows if the client does not specify the number of rows to return.

6

Components and Examples - Rule Engine Plugin

Makes GenQuery2 available to the iRODS Rule Language and other rule
engine plugins.

The use of a rule engine plugin is temporary, but required for 4.3.0. This
requirement will be lifted following the release of iRODS 4.3.1.

The rule engine plugin includes the following rules ...

genquery2_execute(*handle, *query_string)

genquery2_next_row(*handle)

genquery2_column(*handle, *index, *value)

genquery2_destroy(*handle)

7

Components and Examples - Rule Engine Plugins Example

genquery2_test_rule()
{
 # Execute a query. The results are stored in the Rule Engine Plugin.
 genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");

 # Iterate over the resutls.
 while (errorcode(genquery2_next_row(*handle)) == 0) {
 genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.
 genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.
 writeLine("stdout", "logical path => [*coll_name/*data_name]");
 }

 # Free any resources used. This is handled for you when the agent is shut down as well.
 genquery2_destroy(*handle);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

 # Execute a query. The results are stored in the Rule Engine Plugin.
 genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");

genquery2_test_rule()1
{2

3
4

 5
 # Iterate over the resutls.6
 while (errorcode(genquery2_next_row(*handle)) == 0) {7
 genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
 genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
 writeLine("stdout", "logical path => [*coll_name/*data_name]");10
 }11
 12
 # Free any resources used. This is handled for you when the agent is shut down as well.13
 genquery2_destroy(*handle);14
}15

 # Iterate over the resutls.
 while (errorcode(genquery2_next_row(*handle)) == 0) {

genquery2_test_rule()1
{2
 # Execute a query. The results are stored in the Rule Engine Plugin.3
 genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");4
 5

6
7

 genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
 genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
 writeLine("stdout", "logical path => [*coll_name/*data_name]");10
 }11
 12
 # Free any resources used. This is handled for you when the agent is shut down as well.13
 genquery2_destroy(*handle);14
}15

 genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.
 genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.
 writeLine("stdout", "logical path => [*coll_name/*data_name]");

genquery2_test_rule()1
{2
 # Execute a query. The results are stored in the Rule Engine Plugin.3
 genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");4
 5
 # Iterate over the resutls.6
 while (errorcode(genquery2_next_row(*handle)) == 0) {7

8
9

10
 }11
 12
 # Free any resources used. This is handled for you when the agent is shut down as well.13
 genquery2_destroy(*handle);14
}15

 # Free any resources used. This is handled for you when the agent is shut down as well.
 genquery2_destroy(*handle);

genquery2_test_rule()1
{2
 # Execute a query. The results are stored in the Rule Engine Plugin.3
 genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");4
 5
 # Iterate over the resutls.6
 while (errorcode(genquery2_next_row(*handle)) == 0) {7
 genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
 genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
 writeLine("stdout", "logical path => [*coll_name/*data_name]");10
 }11
 12

13
14

}15

Enable access to the rules by adding the following to the rule_engines stanza of
server_config.json. For example ...

Example rule ...

{
 "instance_name": "irods_rule_engine-genquery2-instance",
 "plugin_name": "irods_rule_engine-genquery2",
 "plugin_specific_configuration": {}
}

8

Components and Examples - iCommand

iquery - A binary which enables execution of GenQuery2 queries via the
command line.

iquery - Query the iRODS Catalog

Usage: iquery [OPTION]... QUERY_STRING

Queries the iRODS Catalog using GenQuery2.

QUERY_STRING is expected to be a string matching the GenQuery2 syntax. Failing
to meet this requirement will result in an error.

Mandatory arguments to long options are mandatory for short options too.

Options:
 --sql-only Print the SQL generated by the parser. The generated
 SQL will not be executed.
 -z, --zone=ZONE_NAME The name of the zone to run the query against. Defaults
 to the local zone.
 -h, --help Display this help message and exit.

iRODS Version 4.3.0 iquery (experimental)

9

Components and Examples - iCommand Examples

List the number of replicas for all data objects. jq is used for formatting purposes.

$ iquery "select COLL_NAME, DATA_NAME, count(DATA_ID) group by COLL_NAME, DATA_NAME" | jq

[
 [
 "/tempZone/home/rods",
 "foo",
 "3"
],
 [
 "/tempZone/home/rods",
 "bar",
 "1"
]
]

Below is the output from running the command.

10

Components and Examples - iCommand Examples

Show the SQL generated by the parser. pg_format is used for formatting purposes.

$ iquery --sql-only \
 "select COLL_NAME, DATA_NAME, count(DATA_ID) group by COLL_NAME, DATA_NAME" | \
 pg_format -

SELECT DISTINCT
 t0.coll_name,
 t1.data_name,
 count(t1.data_id)
FROM
 R_COLL_MAIN t0
 INNER JOIN R_DATA_MAIN t1 ON t0.coll_id = t1.coll_id
 INNER JOIN R_OBJT_ACCESS pdoa ON t1.data_id = pdoa.object_id
 INNER JOIN R_TOKN_MAIN pdt ON pdoa.access_type_id = pdt.token_id
 INNER JOIN R_USER_MAIN pdu ON pdoa.user_id = pdu.user_id
 INNER JOIN R_OBJT_ACCESS pcoa ON t0.coll_id = pcoa.object_id
 INNER JOIN R_TOKN_MAIN pct ON pcoa.access_type_id = pct.token_id
 INNER JOIN R_USER_MAIN pcu ON pcoa.user_id = pcu.user_id
WHERE
 pdu.user_name = ?
 AND pcu.user_name = ?
 AND pdoa.access_type_id >= 1050
 AND pcoa.access_type_id >= 1050
GROUP BY
 t0.coll_name,
 t1.data_name FETCH FIRST 16 ROWS ONLY

Below is the output from running the command. The SQL is never executed.

11

Remaining Work

The following items must be resolved before making GenQuery2 a part of the

server.

Clean up the CMakeLists.txt file

Implement tests

Discuss how much GenQuery2 should know about Groups

Discuss how much GenQuery2 should know about Tickets

https://github.com/irods/irods_api_plugin_genquery2/issues/3

https://github.com/irods/irods_api_plugin_genquery2/issues/4

12

https://github.com/irods/irods_api_plugin_genquery2/issues/3
https://github.com/irods/irods_api_plugin_genquery2/issues/4

Future Plans

Expose more SQL features

CASE, HAVING clauses

Sub-selects

Multi-argument functions

Consider controlling various options through GenQuery2 syntax

e.g. iquery "option distinct off; select DATA_NAME"

Consider switching from boost::variant to std::variant

Simplify pagination

Provide a utility library that manages the page information

Provide a document explaining how the utility may be implemented

13

Community Engagement

We are considering the idea of releasing GenQuery2 as an experimental

package.

Allows the community to try GenQuery2 and provide feedback

Allows frequent updates (no ties to a server release)

Does not target a specific version of iRODS

We need your feedback!

The more the community participates, the better GenQuery2 will become.

14

Thank you!

Questions?

If you're interested in learning more about the
implementation and/or seeing more examples of

GenQuery2, please watch this talk.TRiRODS

15

https://youtu.be/3dR_JoGA6wA

