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What is GenQuery2?

An experimental redesign (and implementation) of the iRODS GenQuery parser.

 

This project exists as a means for allowing the iRODS community to test the
implementation and provide feedback so that the iRODS Consortium can produce a
GenQuery parser that is easy to understand, maintain, and enhance all while
providing a syntax that mirrors standard SQL as much as possible.

 

Once stable, the code will be merged into the iRODS server making it available with
future releases of iRODS.
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GitHub Repository

 

The repository contains all source code for generating a package
containing the following ...

An API Plugin
A Rule Engine Plugin
An iCommand

 

Everything discussed in this talk can be found in the repository.

https://github.com/irods/irods_api_plugin_genquery2
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https://github.com/irods/irods_api_plugin_genquery2/issues/3


General Features

Enforces the iRODS permission model
Logical AND, OR, and NOT
Grouping via parentheses
SQL CAST
SQL GROUP BY
SQL aggregate functions (e.g. count, sum, avg, etc)
Per-column sorting via ORDER BY [ASC|DESC]
SQL FETCH FIRST N ROWS ONLY (LIMIT offered as an alias)
Metadata queries involving different iRODS entities (i.e. data objects,
collections, users, and resources)
Operators: =, !=, <, <=, >, >=, LIKE, BETWEEN, IS [NOT] NULL
SQL keywords are case-insensitive
Federation is supported
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Components and Examples - API Plugin

Wraps the parser and makes it available to all clients.
 
Interface Details

API Number
1000001 (may change in the future)

Input Parameters
query_string - The GenQuery2 string.
zone - The name of the zone to execute the query in.
sql_only - An integer instructing the plugin to return the generated SQL.

Output
On success, returns a JSON string representing the resultset
On failure, returns an iRODS error code

 
Defaults to returning a max of 16 rows if the client does not specify the number of rows to return.
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Components and Examples - Rule Engine Plugin

Makes GenQuery2 available to the iRODS Rule Language and other rule
engine plugins.

 

The use of a rule engine plugin is temporary, but required for 4.3.0. This
requirement will be lifted following the release of iRODS 4.3.1.

 

The rule engine plugin includes the following rules ...

genquery2_execute(*handle, *query_string)

genquery2_next_row(*handle)

genquery2_column(*handle, *index, *value)

genquery2_destroy(*handle)
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Components and Examples - Rule Engine Plugins Example

genquery2_test_rule()
{
    # Execute a query. The results are stored in the Rule Engine Plugin.
    genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");
 
    # Iterate over the resutls.
    while (errorcode(genquery2_next_row(*handle)) == 0) {
        genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.
        genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.
        writeLine("stdout", "logical path => [*coll_name/*data_name]");
    }
 
    # Free any resources used. This is handled for you when the agent is shut down as well.
    genquery2_destroy(*handle);
}
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    # Iterate over the resutls.6
    while (errorcode(genquery2_next_row(*handle)) == 0) {7
        genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
        genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
        writeLine("stdout", "logical path => [*coll_name/*data_name]");10
    }11
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    # Free any resources used. This is handled for you when the agent is shut down as well.13
    genquery2_destroy(*handle);14
}15

    # Iterate over the resutls.
    while (errorcode(genquery2_next_row(*handle)) == 0) {
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    # Execute a query. The results are stored in the Rule Engine Plugin.3
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        genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
        genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
        writeLine("stdout", "logical path => [*coll_name/*data_name]");10
    }11
 12
    # Free any resources used. This is handled for you when the agent is shut down as well.13
    genquery2_destroy(*handle);14
}15
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        genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.
        writeLine("stdout", "logical path => [*coll_name/*data_name]");
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{2
    # Execute a query. The results are stored in the Rule Engine Plugin.3
    genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");4
 5
    # Iterate over the resutls.6
    while (errorcode(genquery2_next_row(*handle)) == 0) {7
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    }11
 12
    # Free any resources used. This is handled for you when the agent is shut down as well.13
    genquery2_destroy(*handle);14
}15

    # Free any resources used. This is handled for you when the agent is shut down as well.
    genquery2_destroy(*handle);

genquery2_test_rule()1
{2
    # Execute a query. The results are stored in the Rule Engine Plugin.3
    genquery2_execute(*handle, "select COLL_NAME, DATA_NAME order by DATA_NAME desc limit 1");4
 5
    # Iterate over the resutls.6
    while (errorcode(genquery2_next_row(*handle)) == 0) {7
        genquery2_column(*handle, '0', *coll_name); # Copy the COLL_NAME into *coll_name.8
        genquery2_column(*handle, '1', *data_name); # Copy the DATA_NAME into *data_name.9
        writeLine("stdout", "logical path => [*coll_name/*data_name]");10
    }11
 12

13
14

}15

Enable access to the rules by adding the following to the rule_engines stanza of
server_config.json. For example ...

Example rule ...

{ 
    "instance_name": "irods_rule_engine-genquery2-instance", 
    "plugin_name": "irods_rule_engine-genquery2", 
    "plugin_specific_configuration": {} 
}
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Components and Examples - iCommand

iquery - A binary which enables execution of GenQuery2 queries via the
command line.

iquery - Query the iRODS Catalog 
 
Usage: iquery [OPTION]... QUERY_STRING 
 
Queries the iRODS Catalog using GenQuery2. 
 
QUERY_STRING is expected to be a string matching the GenQuery2 syntax. Failing 
to meet this requirement will result in an error. 
 
Mandatory arguments to long options are mandatory for short options too. 
 
Options: 
      --sql-only        Print the SQL generated by the parser. The generated 
                        SQL will not be executed. 
  -z, --zone=ZONE_NAME  The name of the zone to run the query against. Defaults 
                        to the local zone. 
  -h, --help            Display this help message and exit. 
 
iRODS Version 4.3.0                iquery (experimental)
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Components and Examples - iCommand Examples

List the number of replicas for all data objects. jq is used for formatting purposes.

$ iquery "select COLL_NAME, DATA_NAME, count(DATA_ID) group by COLL_NAME, DATA_NAME" | jq 

[ 
  [ 
    "/tempZone/home/rods", 
    "foo", 
    "3" 
  ], 
  [ 
    "/tempZone/home/rods", 
    "bar", 
    "1" 
  ] 
]

Below is the output from running the command.
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Components and Examples - iCommand Examples

Show the SQL generated by the parser. pg_format is used for formatting purposes.

$ iquery --sql-only \ 
     "select COLL_NAME, DATA_NAME, count(DATA_ID) group by COLL_NAME, DATA_NAME" | \ 
     pg_format - 

SELECT DISTINCT 
    t0.coll_name, 
    t1.data_name, 
    count(t1.data_id) 
FROM 
    R_COLL_MAIN t0 
    INNER JOIN R_DATA_MAIN t1 ON t0.coll_id = t1.coll_id 
    INNER JOIN R_OBJT_ACCESS pdoa ON t1.data_id = pdoa.object_id 
    INNER JOIN R_TOKN_MAIN pdt ON pdoa.access_type_id = pdt.token_id 
    INNER JOIN R_USER_MAIN pdu ON pdoa.user_id = pdu.user_id 
    INNER JOIN R_OBJT_ACCESS pcoa ON t0.coll_id = pcoa.object_id 
    INNER JOIN R_TOKN_MAIN pct ON pcoa.access_type_id = pct.token_id 
    INNER JOIN R_USER_MAIN pcu ON pcoa.user_id = pcu.user_id 
WHERE 
    pdu.user_name = ? 
    AND pcu.user_name = ? 
    AND pdoa.access_type_id >= 1050 
    AND pcoa.access_type_id >= 1050 
GROUP BY 
    t0.coll_name, 
    t1.data_name FETCH FIRST 16 ROWS ONLY 

Below is the output from running the command. The SQL is never executed.
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Remaining Work

The following items must be resolved before making GenQuery2 a part of the

server.

Clean up the CMakeLists.txt file

Implement tests

Discuss how much GenQuery2 should know about Groups

Discuss how much GenQuery2 should know about Tickets

https://github.com/irods/irods_api_plugin_genquery2/issues/3

https://github.com/irods/irods_api_plugin_genquery2/issues/4
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https://github.com/irods/irods_api_plugin_genquery2/issues/3
https://github.com/irods/irods_api_plugin_genquery2/issues/4


Future Plans

Expose more SQL features

CASE, HAVING clauses

Sub-selects

Multi-argument functions

Consider controlling various options through GenQuery2 syntax

e.g. iquery "option distinct off; select DATA_NAME"

Consider switching from boost::variant to std::variant

Simplify pagination

Provide a utility library that manages the page information

Provide a document explaining how the utility may be implemented
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Community Engagement

We are considering the idea of releasing GenQuery2 as an experimental

package.

Allows the community to try GenQuery2 and provide feedback

Allows frequent updates (no ties to a server release)

Does not target a specific version of iRODS

 

We need your feedback!

 

The more the community participates, the better GenQuery2 will become.
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Thank you!

Questions?

If you're interested in learning more about the
implementation and/or seeing more examples of

GenQuery2, please watch this  talk.TRiRODS
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https://youtu.be/3dR_JoGA6wA

