
Kory Draughn
Chief Technologist
iRODS Consortium

June 13-16, 2023
iRODS User Group Meeting 2023

Chapel Hill, NC
1

Overview

What is the iRODS HTTP API?

Why is this necessary?

Design

Configuration

Connection Pooling

Parallel Writes

General Performance

Examples

Remaining Work

Future Plans

2

What is the iRODS HTTP API?

An experimental redesign of the iRODS C++ REST API.

Goals of the project ...

Present a cohesive representation of the iRODS API over the HTTP protocol,

effectively simplifying development of client-side iRODS applications for new

developers

Maintain performance close to the iCommands

Remove behavioral differences between client-side iRODS libraries by building new

libraries on top of the HTTP API

C, C++, Java, Python, etc - all languages produce identical behavior and results

Absorbed by the iRODS server if adoption is significant

3

Why is this necessary?

The iRODS C++ REST API proves that presenting iRODS as HTTP is possible, however, usage
of the project over time has uncovered some challenges.

Challenges ...

Too many open ports raise security concerns
Stability issues (e.g. crashing endpoints)
Separation of endpoints increases complexity due to multiple layers

e.g. Interns found it difficult to understand how things are composed
Pistache HTTP library lacks completeness/maturity/adoption
Names of existing endpoints are fairly general which leads to difficulty in naming of new
endpoints

The iRODS HTTP API is aimed at resolving these issues by taking a different approach based
on what we've learned from the community and the iRODS S3 API.

To view the original document which kick-started this effort, click .here

4

https://gist.github.com/korydraughn/78ec96120234659db1c2ba3235efa46c

Design - Early Decisions

Single binary exposing one (or two) ports
Boost.Beast

A C++ header-only library providing networking facilities for building high
performance libraries and applications which need support for HTTP/1 and
Websockets
First used by the iRODS S3 API

Fixed set of URLs

Easy for users and developers to remember

Renamed from REST to HTTP

The rules of REST are not clear
The rules of REST do not map well to the iRODS API
iRODS is stateful
Focus on designing the best API we can

5

Design - API URLs

Named based on concepts and entities defined in iRODS.

Operations are specified via parameters. This decision keeps URLs simple (i.e.
no nesting required) and allows new/existing developers to guess which URL
exposes the behavior they are interested in.

For example, if you want to modify a user, look at /users-groups. Or, perhaps
you need to write data to a data object, then you'd use /data-objects.

/authenticate /info /resources /users-groups
/collections /metadata /rules /zones
/data-objects /query /tickets

6

Design - API Parameters

All URLs, except /authenticate, accept an op parameter.

Mapped to a function responsible for executing the requested operation
Shares common values where possible

e.g. stat, list, create, remove, etc

Common parameters used through out the API ...

lpath
replica-number
src-resource
dst-resource
offset
count

Parameter names are not final and may change in the future.

7

Configuration - Top Level

{
 // Defines HTTP options that affect how the
 // client-facing component of the server behaves.
 "http_server": {
 // ...
 },

 // Defines iRODS connection information.
 "irods_client": {
 // ...
 }
}

Defines two sections to help administrators understand the options and how they
relate to each other.

Modeled after NFSRODS.

8

Configuration - http_server

"http_server": {
 "host": "0.0.0.0",
 "port": 9000,

 "log_level": "warn",

 "authentication": {
 "basic": {
 "timeout_in_seconds": 3600
 }
 },

 "requests": {
 "threads": 3,
 "max_rbuffer_size_in_bytes": 8388608,
 "timeout_in_seconds": 30
 },

 "background_io": {
 "threads": 3
 }
}

9

Configuration - irods_client

"irods_client": {
 "host": "<string>",
 "port": 1247,
 "zone": "<zone>",

 "proxy_rodsadmin": {
 "username": "<string>",
 "password": "<string>"
 },

 "connection_pool": {
 "size": 6,
 "refresh_timeout_in_seconds": 600
 },

 "max_rbuffer_size_in_bytes": 8192,
 "max_wbuffer_size_in_bytes": 8192,

 "max_number_of_rows_per_catalog_query": 15
}

10

Connection Pooling

iRODS clients connect and disconnect frequently.

This kills performance!

This issue resulted in the following enhancements for iRODS 4.3.1 ...

Proxy user support for irods::connection_pool and irods::client_connection
Not yet merged (see for details)

rc_switch_user
Allows the identity associated with an RcComm to be changed in real-time
Original work can be found in

With these facilities, the iRODS HTTP API can reuse existing iRODS connections to
significantly boost performance.

PR #7047

PR #6691

11

https://github.com/irods/irods/pull/7047
https://github.com/irods/irods/pull/6691/commits/ae51244834f6c341582af6f45172b60d4208ccfa

Connection Pooling - Implementation

// TODO May require the zone name be passed as well for federation?
auto get_connection(const std::string& _username)
 -> irods::connection_pool::connection_proxy
{
 namespace log = irods::http::log;

 auto& cp = irods::http::globals::conn_pool;
 auto conn = cp->get_connection();
 const auto& zone = irods::http::globals::config->at("irods_client")
 .at("zone").get_ref<const std::string&>();

 log::trace("{}: Changing identity associated with connection to [{}].",
 __func__, _username);

 auto* conn_ptr = static_cast<RcComm*>(conn);
 const auto ec = rc_switch_user(conn_ptr, _username.c_str(), zone.c_str());

 if (ec != 0) {
 log::error("{}: rc_switch_user error: {}", __func__, ec);
 THROW(SYS_INTERNAL_ERR, "rc_switch_user error.");
 }

 log::trace("{}: Successfully changed identity associated with connection to [{}].",
 __func__, _username);

 return conn;
} // get_connection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 const auto ec = rc_switch_user(conn_ptr, _username.c_str(), zone.c_str());

// TODO May require the zone name be passed as well for federation?1
auto get_connection(const std::string& _username)2
 -> irods::connection_pool::connection_proxy3
{4
 namespace log = irods::http::log;5
 6
 auto& cp = irods::http::globals::conn_pool;7
 auto conn = cp->get_connection();8
 const auto& zone = irods::http::globals::config->at("irods_client")9
 .at("zone").get_ref<const std::string&>();10
 11
 log::trace("{}: Changing identity associated with connection to [{}].",12
 __func__, _username);13
 14
 auto* conn_ptr = static_cast<RcComm*>(conn);15

16
 17
 if (ec != 0) {18
 log::error("{}: rc_switch_user error: {}", __func__, ec);19
 THROW(SYS_INTERNAL_ERR, "rc_switch_user error.");20
 }21
 22
 log::trace("{}: Successfully changed identity associated with connection to [{}].",23
 __func__, _username);24
 25
 return conn;26
} // get_connection27

12

Parallel Writes

iRODS does not allow a data object to be written to in parallel without coordination.

Clients wanting to upload data in parallel are required to do the following ...

1. Open a stream to the replica of interest.
2. Capture the Replica Access Token from the stream.
3. Open secondary streams.

Each stream must use its own connection
Each stream must target the same replica
Each stream must use the same open flags
Each stream must pass the Replica Access Token obtained from the stream in
step (1)

4. Send bytes across streams.
5. Close secondary streams without updating the catalog.
6. Close the original stream normally.

13

Parallel Writes

Fully supported through the use of a Parallel Write Handle.

This ultimately means, the iRODS HTTP API server maintains state on behalf of the
client.

Performing a Parallel Write requires the use of two operations ...

parallel_write_init
Instructs the server to allocate memory for managing the state of the upload

parallel_write_shutdown
Instructs the server to deallocate memory obtained via a call to
parallel_write_init

Large files must use multipart/form-data as the content type. Failing to honor this rule
will result in an error or corrupt data.

14

Parallel Writes - Example

http_api_url="${base_url}/data-objects"

Open 3 streams to the data object, file.bin.
transfer_handle=$(curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 --data-urlencode 'op=parallel_write_init' \
 --data-urlencode "lpath=/tempZone/home/rods/file.bin" \
 --data-urlencode 'stream-count=3' \
 | jq -r .parallel_write_handle)

Write "hello" (i.e. 5 bytes) to the data object.
Notice we didn't specify which stream to use.
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 -F 'op=write' \
 -F "parallel-write-handle=$transfer_handle" \
 -F 'count=5' \
 -F 'bytes=hello;type=application/octet-stream' \
 | jq

Shutdown all streams and update the catalog.
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 --data-urlencode 'op=parallel_write_shutdown' \
 --data-urlencode "parallel-write-handle=$transfer_handle" \
 | jq

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

http_api_url="${base_url}/data-objects"1
 2
Open 3 streams to the data object, file.bin.3
transfer_handle=$(curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \4
 --data-urlencode 'op=parallel_write_init' \5
 --data-urlencode "lpath=/tempZone/home/rods/file.bin" \6
 --data-urlencode 'stream-count=3' \7
 | jq -r .parallel_write_handle)8
 9
Write "hello" (i.e. 5 bytes) to the data object.10
Notice we didn't specify which stream to use.11
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \12
 -F 'op=write' \13
 -F "parallel-write-handle=$transfer_handle" \14
 -F 'count=5' \15
 -F 'bytes=hello;type=application/octet-stream' \16
 | jq17
 18
Shutdown all streams and update the catalog.19
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \20
 --data-urlencode 'op=parallel_write_shutdown' \21
 --data-urlencode "parallel-write-handle=$transfer_handle" \22
 | jq23

Open 3 streams to the data object, file.bin.
transfer_handle=$(curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 --data-urlencode 'op=parallel_write_init' \
 --data-urlencode "lpath=/tempZone/home/rods/file.bin" \
 --data-urlencode 'stream-count=3' \
 | jq -r .parallel_write_handle)

http_api_url="${base_url}/data-objects"1
 2

3
4
5
6
7
8

 9
Write "hello" (i.e. 5 bytes) to the data object.10
Notice we didn't specify which stream to use.11
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \12
 -F 'op=write' \13
 -F "parallel-write-handle=$transfer_handle" \14
 -F 'count=5' \15
 -F 'bytes=hello;type=application/octet-stream' \16
 | jq17
 18
Shutdown all streams and update the catalog.19
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \20
 --data-urlencode 'op=parallel_write_shutdown' \21
 --data-urlencode "parallel-write-handle=$transfer_handle" \22
 | jq23

Write "hello" (i.e. 5 bytes) to the data object.
Notice we didn't specify which stream to use.
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 -F 'op=write' \
 -F "parallel-write-handle=$transfer_handle" \
 -F 'count=5' \
 -F 'bytes=hello;type=application/octet-stream' \
 | jq

http_api_url="${base_url}/data-objects"1
 2
Open 3 streams to the data object, file.bin.3
transfer_handle=$(curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \4
 --data-urlencode 'op=parallel_write_init' \5
 --data-urlencode "lpath=/tempZone/home/rods/file.bin" \6
 --data-urlencode 'stream-count=3' \7
 | jq -r .parallel_write_handle)8
 9

10
11
12
13
14
15
16
17

 18
Shutdown all streams and update the catalog.19
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \20
 --data-urlencode 'op=parallel_write_shutdown' \21
 --data-urlencode "parallel-write-handle=$transfer_handle" \22
 | jq23

Shutdown all streams and update the catalog.
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \
 --data-urlencode 'op=parallel_write_shutdown' \
 --data-urlencode "parallel-write-handle=$transfer_handle" \
 | jq

http_api_url="${base_url}/data-objects"1
 2
Open 3 streams to the data object, file.bin.3
transfer_handle=$(curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \4
 --data-urlencode 'op=parallel_write_init' \5
 --data-urlencode "lpath=/tempZone/home/rods/file.bin" \6
 --data-urlencode 'stream-count=3' \7
 | jq -r .parallel_write_handle)8
 9
Write "hello" (i.e. 5 bytes) to the data object.10
Notice we didn't specify which stream to use.11
curl -H "Authorization: Bearer $bearer_token" "$http_api_url" \12
 -F 'op=write' \13
 -F "parallel-write-handle=$transfer_handle" \14
 -F 'count=5' \15
 -F 'bytes=hello;type=application/octet-stream' \16
 | jq17
 18

19
20
21
22
23

Demonstrates how to open 3 streams to a data object and write 5 bytes to it.

15

Parallel Writes - Java application vs iput

Testing was carried out using two machines in different locations

Home network vs Office network

Custom Java application built on top of the iRODS HTTP API

Not optimized

Each application used 4 threads to upload a 100 MiB file into iRODS

Client Time Elapsed
iput (uses high ports) 50.113s

Java application 51.975s

Performance is sensitive to buffer sizes and number of threads used.

16

General Performance - Test Environment and Setup

Used ApacheBench to measure Requests Per Second (RPS)

Sent 2000 requests total
Maintained 500 concurrent requests at all times

All testing was performed using a single machine

Development machine has 32 cores with 256 GiB of RAM
Custom build of iRODS ~4.3.1

Supports rc_switch_user and changes to connection pool library

iRODS HTTP API

Optimizations enabled
32 threads for foreground processing
32 threads for background processing

17

General Performance - Test Results

/authenticate - Authenticating a new user using Basic/Native authentication

133.2 RPS

50% of requests took at least 3670 ms to serve

/resources - Stat'ing a resource

2599.53 RPS

50% of requests took at least 167 ms to serve

/data-objects - Reading 8192 bytes

697.18 RPS

50% of requests took at least 686 ms to serve

18

Examples - Stat'ing a collection

base_url="http://localhost:9000/irods-http/0.9.5"
bearer_token=$(curl -sX POST --user 'rods:rods' "${base_url}/authenticate")

curl -sG -H "Authorization: Bearer $bearer_token" \
 "${base_url}/collections" \
 --data-urlencode 'op=stat' \
 --data-urlencode 'lpath=/tempZone/home/rods' \
 | jq

{
 "inheritance_enabled": false,
 "irods_response": {
 "error_code": 0
 },
 "modified_at": 1686499669,
 "permissions": [
 {
 "name": "rods",
 "perm": "own",
 "type": "rodsadmin",
 "zone": "tempZone"
 }
],
 "registered": true,
 "type": "collection"
}

19

Examples - Listing available Rule Engine Plugins

base_url="http://localhost:9000/irods-http/0.9.5"
bearer_token=$(curl -sX POST --user 'rods:rods' "${base_url}/authenticate")

curl -sG -H "Authorization: Bearer $bearer_token" \
 "${base_url}/rules" \
 --data-urlencode 'op=list_rule_engines' \
 | jq

{
 "irods_response": {
 "error_code": 0
 },
 "rule_engine_plugin_instances": [
 "irods_rule_engine_plugin-irods_rule_language-instance",
 "irods_rule_engine_plugin-cpp_default_policy-instance"
]
}

20

Remaining Work

Implement tests

Improve performance of /authenticate endpoint

Consider batch / bulk operations

Add support for GenQuery2

Clean up implementation for contributors

Finish documentation

Define good defaults for I/O-specific configuration properties

Add support for Docker and Docker-Compose

Expose SSL configuration properties for iRODS communication

21

Future Plans

Consider adding options for enabling/disabling features, endpoints, etc

The iRODS C++ REST API supported this for all endpoints

Is this the responsiblity of the proxy (e.g. nginx, apache httpd)?

Consider how to best support load balancers

Parallel Writes are stateful

Consider how to deal with long running agents containing stale

information

Should we refresh the connection after N number of API operations?

Should we refresh the connection after certain API operations?

e.g. Resource management operations

22

Thank you!

Questions?

https://github.com/irods/irods_client_http_api
23

https://github.com/irods/irods_client_http_api

