
10 Years at CyVerse:
Some iRODS Administration Practices

Tony Edgin

iRODS UGM 2023

Solutions

iRODS is hard!

iRODS is Powerful, but Difficult to Master

• Federation
• Distribution
• Resource Composition
• Plugin architecture that supports custom plugins

microservices, resources, authentication, networking, databases,
rule engines, APIs

• 1000+ PEPs for attaching policy logic
• Sparse, and incomplete documentation
• Few online tutorials

Sharing knowledge within the community is important for
using it effectively.

Agenda

1. Very brief introduction to CyVerse Data Store

2. Go over a few of our iRODS solutions

a. Creating service accounts

b. Determining data residency

c. Downloading large sets of small files

3. Propose an iRODS administration interest group

CyVerse Data Store Built on iRODS

CyVerse’s iRODS Zone by the Numbers

• 1 catalog provider and 42 resource servers
• 1 primary and 1 standby PostgreSQL server for ICAT
• 4300 lines of iRODS rule language based policy

• Global policies
checksumming, permission assignment, data residency, asynchronous replication,
user storage usage tracking, storage freespace tracking, trash removal, service accounts,
event publishing

• 4 service specific rule bases
• 7 project specific rule bases

• 120,000 users
• 500 million data objects consuming 12 PiB of storage
• 16 TiB uploaded and 440 TiB downloaded monthly
• 40 concurrent sessions on average

Service Accounts

Problem

Need to manage services that connect to iRODS differently than people

• A person has metadata we track, e.g., employer, ethnicity, etc.

• A service performs a task on behalf of a person, i.e., lacks agency

• A person can own data, a service does not (excluding state data)

Service Accounts

iRODS custom account types

Account types are managed through the token system in user_type namespace

New account type can be added through admin interface

iadmin at user_type ACCOUNT-TYPE '' DESCRIPTION

by convention, second value holds type’s description

Rule logic is used to differentiate allowed behavior

Limitations:

- Cannot be given admin privileges, e.g., cannot proxy for a user
- Cannot create one that acts as a group

Service Accounts

CyVerse service account type

iadmin at user_type service '' 'iRODS service account'

iadmin mkuser SERVICE-NAME service

Policies

• No home or trash collection
• Does not belong to public group
• Data object created by service, owned by user invoking service (planned)

Custom account types are usable in iRODS 4.2.8, but not 4.2.12. iadmin mkuser does not recognize
them.

Service Accounts

Weaknesses of solution

Service account cannot proxy for a user

• Prevents track user actions for provenance
• User must explicitly grant service access to data
• Ownership of data generated by service not well defined

iRODS feature request

Have a built-in service account type able to proxy for a user

Or

Have a PEP for controlling an account type’s ability to proxy

Data Residency

Problem

We have general purpose, project-specific, and service-specific storage
requirements.

• Some projects provide own storage server dedicated to their data

• One GPU-based service requires colocated storage, project can subscribe to service to have data
hosted on the service storage

• Remaining data needs copies at both UArizona and TACC

• Data proximity to compute – users can run analyses on data at either site

• Data recoverability

General resources

Each project and service

• Storage server configured as resource server
• Single storage resource
• passthru root resource

/zone/prjs/prj

Data Residency
Resource organization

General storage

• Bidirectional asynchronous replication
between sites

• Synchronous degraded transfer too much
• Acceptable risk of data loss

• Root coordinating resource for each site

asynchronous
replication

/zone

ua:/vault tacc:/vault

prjResc:
passthru

prj-host:/vault/prjs/prj

/zone/prjs/p1/svc
/zone/prjs/p2/svc

svc-host:/vault/prjs/p1/svc
svc-host:/vault/prjs/p2/svc

Resource for project prj

Resource for service svc hosting for projects p1 and p2

svcResc:
passthru

prjStore

uaResc taccResc

svcStore

Data Residency

Choosing where to store new
data object (wrong approach)

Condition the rule logic on embedded
project paths

• Lots of repeated code
• Order dependent
• Adding/removing project → redeploy rules

def acSetRescSchemeForCreate(_, cb, rei):
 obj = session_vars.get_map(rei).get(
 'data_object')
 path = obj.get('object_path')

 # choose general resc based on irods server
 resc = _choose_general_resc(cb)

 # projects
 if path.startswith('/zone/projects/prj_1/'):
 resc = 'prj1Resc'
 ⋮
 elif path.startswith(
 '/zone/projects/prj_n/'
):
 resc = 'prjNRes'

 # service
 elif (
 path.startswith('/zone/projects/1/svc/') or
 ⋮
 path.startswith('/zone/projects/m/svc/')
):
 resc = 'svcResc'

 res = cb.msiSetDefaultResc(resc, 'forced')
 return res['code']

def acSetRescSchemeForCreate(_, cb, rei):
 obj = session_vars.get_map(rei).get(
 'data_object')
 path = obj.get('object_path')

 # choose general resc based on irods server
 resc = _choose_general_resc(cb)

 cols = (
 'ORDER_DESC(META_RESC_ATTR_VALUE)' ,
 'RESC_NAME')
 cond = (
 "META_RESC_ATTR_NAME ="
 " 'hosted-collection'")
 for rec in genquery.Query(cb, cols, cond):
 if path.startswith(rec[0]):
 resc = rec[1]
 break

 res = cb.msiSetDefaultResc(resc, 'forced')
 return res['code']

Data Residency

Choosing where to store new
data object (better approach)

Attach AVU to resource to associate
project path
 imeta add -R RESC \
 hosted-collection COLL

Rule logic use AVUs to determine
resource

• No repeated code
• Order independent
• Adding/removing project → modify AVUs,

not rule logic
“Configuration, not code” - Jason Coposky

Data Residency

Choosing where to replicate data object

Replication resource determined by primary resource

Attach AVU to primary resource to associate replica resource
imeta set -R PRIMARY-RESC replica-resource REPLICA-RESC

Rule logic use AVUs to determine resource

• Attached to PEP acSetRescSchemeForRepl
• Similar to logic for choosing primary replica
• If primary has no replica-resource AVU, data object not replicated

Downloading Large Set of Small Files

Problem

A user needs to download multiple TB data set consisting of 100k+ files

Downloading set of small files takes a lot longer than downloading single large with
same volume.

E.g., for me, downloading 1 1000 MiB file takes only 13 s, but downloading 1000
1 MiB files takes 471 s. 36x longer!

This is a general data transfer problem, not just iRODS

Downloading Large Set of Small Files

Common solutions

● Use tar pipe

ssh remote tar --create dataset/ | tar --extract

Weakness
Downloading a single very large file can be problematic, network issues, cache overruns, etc.

● Use tar + split

ssh remote 'tar --create dataset/ | split --bytes=100G - dataset.'
scp 'remote:dataset.*' .
cat dataset.* | tar --extract

Downloading Large Set of Small Files

iRODS solution

Use ibun

ibun -c -D tar dataset.tar dataset/
iget dataset.tar - | tar --extract

Weaknesses

1. If data set distributed across multiple servers, ibun replicates them all to single server first – slow!
2. Very large file transfer can be problematic

Downloading Large Set of Small Files

Another iRODS solution

tar + split + ireg data set on each resource

1. tar+split data set’s folder on each resource server
2. Use ireg to register chunks generated by split into iRODS
3. Use iget to download all chunks
4. For each resource server’s set of chunks, use cat+tar to recover

dataset/

rs1:dataset/

rs2:dataset/

dataset/
dataset.chunked/
 dataset-rs1-aa
 dataset-rs1-ab
 dataset-rs2-aa

rs1:dataset/
rs1:dataset.chunked/
 dataset-rs1-aa
 dataset-rs1-ab

rs2:dataset/
rs2:dataset.chunked/
 dataset-rs2-aa

rs1> tar|split && ireg

rs2> tar|split && ireg

Downloading Large Set of Small Files

Preliminary implementation

Two step process requiring admin user

1. Admin runs script that generates the data set chunks on each resource server and registers them
2. User runs second script that downloads the chunks and extracts the data set

Example usage

One project transferred 100 TB data set (6 million files) 4000 km over a 10 Gbit/s connection. Entire process
took a little over 2 days.

Source code

https://github.com/cyverse/irods-adm/tree/master/chunk-transfer

https://github.com/cyverse/irods-adm/tree/master/chunk-transfer

Downloading Large Set of Small Files

Potential solution that doesn’t require admin user

1. Implement chunking and registration using server-side command script

2. Create iRODS rule that uses msiExecCmd microservice to execute command
script on each resource server

3. Create client-side script that uses irule to invoke rule on provided data set,
then downloads chunks and extracts data set

How about an iRODS Administration Interest
Group?

• Goal is to improve the iRODS administration experience by

• Developing and documenting best practices

• Defining new features for iRODS

• Focus on solving administration problems

• Topic and discussion format

• Intended to fit in the space between iRODS-chat and Trirods

• Interested? Join me for a BOF today at lunch.

