
Using iRODS Rules to Automate Trash Management Policy

Urvika Gola

1

1. Understand what, why and how we are implementing trash management logic in
CyVerse Data Store.

2. Code Walkthrough - Overview of Pepview Tool
3. Code Walkthrough - AVU Metadata logic for trash management
4. Code Walkthrough - Example of custom rule logic in dynamic PEP
5. Automate trash purging

Agenda

2

To automate the trash management process for Data Objects and Collections in iRODS using
dynamic policy enforcement points (PEPs) and microservices invoked using the rule engine plugin
framework.

Goal

3

• Robustness - Enhance our existing solution which was based on irmtrash
• Data Retention Policy
• Efficient utilization of storage space
• User convenience, data Recovery
• To reduce the need for admin to manually monitor trash truncation on a regular

basis

Significance

4

• Dynamic PEPs

• Microservices

• Attribute-Value-Unit (AVU)

Key Components

5

• For every operation that is called, four policy enforcement points are
constructed (pre, post, except, and finally)

• By using some or all of the four distinct policy enforcement points we
ensure that our trash management system adeptly handles various data
movement techniques.

Dynamic PEPs

6

Image source - https://docs.irods.org/4.2.8/plugins/dynamic_policy_enforcement_points/

Download Pepview Builder Tool from CyVerse git repo:
https://github.com/cyverse/irods-adm/blob/master/pepview-builder.sh
https://github.com/cyverse/irods-adm/blob/master/pep-fmt.awk

Run:
./pepview-builder.sh

Output:
pepview.re
pepview-default-peps.re

Step 1: Get a mapping between client
operations and dynamic PEPs

7

https://github.com/cyverse/irods-adm/blob/master/pepview-builder.sh
https://github.com/cyverse/irods-adm/blob/master/pep-fmt.awk

Step 1 contd:
Use pepview tool in server_config.json

8

Understanding pepview.re rule file

9

Understanding pepview.re rule file

10

Understanding pepview.re rule file

11

Using pepview tool

12

Using pepview tool

13

Covering various data movements to trash

• POSIX style open/write/close API calls - used by Jargon and python-irodsclient
libraries

• Items removed using “irm” command
• Items moved directly to trash using “imv” command
• Items renamed in trash using “imv” command
• Items copied directly to trash using “icp” command
• Bulk upload directly to trash “iput -b <>”

14

• Add an AVU to a data object or a collection that stores the epoch time at which it's
moved to the trash.

• Conversely, remove the AVU from the object or collection when moved out of the
trash.

• Automatically purge data objects and collections in the trash for more than 30 days,
based on the AVU value.

Step 2: Adding AVU Metadata

15

Metadata (AVU) in action

16

Metadata (AVU) in action

17

Metadata (AVU) in action

18

irods-fish

19

Working with iRODS command line tools within the fish shell.

https://github.com/cyverse/irods-fish

https://fishshell.com/
https://github.com/cyverse/irods-fish

• pep_api_data_obj_unlink
• pep_api_data_obj_put
• pep_api_rm_coll
• pep_api_coll_create
• pep_api_data_obj_rename
• pep_api_data_obj_copy
• pep_api_data_obj_create

Dynamic PEPs used

20

Step 3: Example (pre)

21

Step 3: Example (except)

22

Step 3: Example (except)

23

Get the epoch timestamp to figure out which items are older than 30 days.

msiGetSystemTime(*timestamp, "");

2,592,000 is the number of seconds in 30 days. We subtract this value from the
current timestamp to calculate the threshold time for items in the trash that are older
than 30 days.

*int_month_timestamp = int(*timestamp) - 2592000;

Step 4: Automate trash clearing

24

Step 4: Automate trash clearing (contd)

25

Step 4: Automate trash clearing (contd)

26

Future scope

27

• Adapt this solution for new data movement methods using icommands, Jargon /
irods-python-client APIs.

• Monitor logs for new errors and improve the rule logic.

Thank you

28

