
June 13-16, 2023
iRODS User Group Meeting 2023

Chapel Hill, NC

Terrell Russell, Ph.D.
@terrellrussell
Executive Director, iRODS Consortium

1



Overview

History

Desire / Justification

Research

Status / Implementation

Architecture

Configuration

Next Steps

2



History - Desire / Justification

Everyone just wants to talk to an S3 endpoint

Easy

Comprehensible

Lots of existing clients

Decoupled authentication

Aligns with our Protocol Plumbing efforts

Accessible / Approachable

Maintainable

3



History - Desire / Justification

Present iRODS as the S3 protocol

Reuse - don't reinvent

Load Balancer friendly

Maintainable

4



History - Desire / Justification

iRODS S3 Working Group

Initial email 20210731

Four options

https://github.com/irods-contrib/irods_working_group_s3

5

https://github.com/irods-contrib/irods_working_group_s3


History - Desire / Justification

1. Update and maintain 
This minio-based front end already exists and has been demonstrated, but has not been updated since its debut. I
do not know the extent that it has been used in production work, perhaps John can talk about that. This uses the
GoRODS client library, which will continue to need to be updated to wrap the latest iRODS C API as new releases of
the server come out. Presumably, BioTeam / John would continue to own/maintain GoRODS and the minio-irods-
gateway.
 
2. minio-irods-gateway converts to use 
Illyoung has produced and is actively developing a pure Go iRODS client library. This new library could be 'swapped'
for the GoRODS calls in the minio-irods-gateway. Presumably, then Arizona / Illyoung would own/maintain a fork of
the minio-irods-gateway.
 
3. Add irods/gateway-irods.go to upstream 
Someone / all of us would port / implement the same work from Option 2 (convert to pure Go), but work with the
minio community to get iRODS to be an officially supported gateway for the MinIO server directly.
 
4. New C++ implementation - 
The iRODS Consortium would work to implement the S3 specification directly with a new C++ client. This could be
more performant (in the long run), but requires the most work and answers to open questions.
 
"I am leaning towards Option 3 as the best option both from a cost/benefit perspective, as well as exposure to a
larger community and confidence that 'it just works'."

https://github.com/bioteam/minio-irods-gateway

https://github.com/cyverse/go-irodsclient

https://github.com/minio/minio/tree/master/cmd/gateway

https://github.com/irods/irods_client_s3_cpp

6

https://github.com/bioteam/minio-irods-gateway
https://github.com/cyverse/go-irodsclient
https://github.com/minio/minio/tree/master/cmd/gateway
https://github.com/irods/irods_client_s3_cpp


History - Research

Investigated the 4 options, in 4 phases

Options 1-3 ... MinIO, Go, TicketBooth

Option 4 ... C++ proof of concept

Multipart

Handshake / Authentication

7



History - Research - Phase 1

Option 1 - MinIO with GoRODS (wrapping C)

Limited, not maintainable (Jul 2021)

Option 2 - MinIO with pure go-irodsclient

Needed to add (anonymous) ticket functionality

Implemented TicketBooth/BoxOffice (Oct 2021)

But would need admin credentials
Might as well just use C++ REST API (Nov 2021)

Lacks multi-user functionality (Feb 2022)

Auth code is in MinIO core - gateway code fires 'too late'

Option 3 - Get work into upstream MinIO

MinIO announced deprecation of gateway (May 2022)

Too hard / not worth supporting 'legacy' POSIX
8



History - Research - Phase 2

Option 4 - New C++ Implementation

Removes dependency on other codebase(s)
1 collection -> 1 bucket
Framework selection (Aug 2022)

Pistache
Oat++
Drogon
Boost.Beast (Nov 2022)

Initial endpoints working (Jan 2023)

User mapping
Bucket mapping

9



History - Research - Phase 2 - Alternate Illyoung Universes

Add S3 protocol support to SFTPGo (Aug 2022)

Searching for existing S3 server in Go (Sept 2022)

Add iRODS backend to Zenko (Oct 2022)

Add JuiceFS frontend to iRODS (Nov 2022)

Add JuiceFS frontend to SFTPGo (Nov 2022)

GarageHQ frontend to iRODS (Jan 2023)

In-memory IBM s3mem-go as inspiration (Mar 2023)

10



History - Research - Phase 3 (Feb-Mar 2023)

Multipart Options

a. Multiobject - write all parts individually to iRODS, then complete triggers copy/concatenate/whatever

pro - relatively simple
con - lots of extra policy, could trigger replication to multiple continents (just a config option)

requires API plugin for concatenate()

b. Store-and-forward - write it all down in the bridge, then send it to iRODS

pro - simple, no extra policy
con - slow/delayed, need POTENTIALLY HUGE disk

c. Efficient store-and-forward - write down / hold non-contiguous parts in bridge - send contiguous parts to iRODS when ready

pro - elegant, single write
con - more complexity, need biggish disk
maybe off the table because a client can re-send the same numbered part and it should overwrite the earlier same part

OR... new thread! offset, overwrite, who cares, same size, magic/perfect, just works, don't look at me…

d. Store-and-register - write it all down where iRODS can see it, then just register it in iRODS

pro - simple, fastest
con - just reg policy?, adds dependency on co-visibility of bridge and iRODS

cannot continue on failure (incomplete writes)

iRODS doesn't know what happened
Client has no way to recover

11



History - Research - Phase 4 (June 2023)

Saved Multipart for later

Demo working with simple boto

HMAC / Signature not working for other client interactions

12



Status / Implementation - Architecture

Single binary

Requires rodsadmin credentials

Two configuration files

irods_environment.json

config.json

13



Status / Implementation - Architecture

Implemented Endpoints

CopyObject
DeleteObject
GetObject
HeadObject
ListObjectsV2
PutObject

Under Discussion

CompleteMultipartUpload
CreateMultipartUpload
UploadPart

Maybe Later?

UploadPartCopy
ListObjects
DeleteObjects
GetObjectAcl
PutObjectAcl
GetObjectTagging
PutObjectTagging

14



Status / Implementation - Configuration

Not Yet Real...

{ 
    // Defines S3 options that affect how the 
    // client-facing component of the server behaves. 
    "s3_server": { 
        // ... 
    }, 
 
    // Defines iRODS connection information. 
    "irods_client": { 
        // ... 
    } 
}

15



Status / Implementation - Configuration - s3_server

"s3_server": { 
    "host": "0.0.0.0", 
    "port": 80, 
       
    "log_level": "warn", 
 
    "bucket_mapping": { 
        # local / static (JSON) 
        # external / dynamic - iRODS or third party API 
    }, 
 
    "user_mapping": { 
        # local / static (JSON) 
        # external / dynamic - iRODS or third party API 
    }, 
 
    "threads": 3 
    } 
}

16



Status / Implementation - Configuration - irods_client

"irods_client": { 
    "host": "<string>", 
    "port": 1247, 
    "zone": "<zone>", 
 
    "proxy_rodsadmin": { 
        "username": "<string>", 
        "password": "<string>" 
    }, 
 
    "connection_pool": { 
        "size": 6, 
        "refresh_timeout_in_seconds": 600 
    }, 
}

17



Next Steps

Configuration consolidation
HMAC cleanup / Confirmation
Packaging / Initial release
Testing

Use as S3 resource
Stress / Performance

Additional plugins
Other bucket mappings
Other user mappings

18



Questions?

Thank you.

19


