An R Client for iRODS
rirods

Martin Schobben Mariana Montes Christine Staiger
Terrell Russell
The R Ecosystem
Introduction to R

Open sourced, active useRs community (26,675 packages)

Emphasis on statistics and visualization of data

Figure 1: www.kdnuggets.com
Reproducible workflows

▶ Creating reproducible workflows
 ▶ Scripted analysis + (remote) Git repository

Never again wonder what method did I use to center variable “foo” in my regression model … ?

▶ But what about the data itself?
 ▶ Centralized, relational, tabular databases

SQLite, MySQL, PostgreSQL, MonetDB with DBI package
Why iRODS?

▶ Freedom from strict formatting requirements
▶ Less data transformations mean higher productivity

```r
# height (cm)
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

# weight (kg)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# linear regression body mass index
BMI <- lm(y ~ x)
summary(BMI)

Call:
lm(formula = y ~ x)

Residuals:
     Min      1Q  Median       3Q      Max
-6.3002 -1.6629  0.0412  1.8944  3.9775
```
Why iRODS?

- Describing your data with metadata
- Making it findable and shareable

What was object BMI again?
Why iRODS?

```r
ils(metadata = TRUE)
```

========
metadata
========
/tempZone/home/martin/BMI.rds :
 attribute value units
 file_type R object RDS
 content linear regression

========
iRODS Zone
========
 logical_path type
 /tempZone/home/martin/BMI.rds data_object
Designing an R Package
CRAN Policies

Comprehensive R Archive Network (CRAN)

- The philosophy
 - Portability: *Happy useRs across the board*
 - Stability: *Stringent requirements for a stable ecosystem*

- What constitutes a good package?
 - Tested and well-documented code
 - R CMD check 50+ tests
A Short History of R + iRODS

- Old R package build on the iRODS C++ API (archived)
- New R package build on the iRODS REST API

<table>
<thead>
<tr>
<th>Feature</th>
<th>iRODS REST</th>
<th>iRODS C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global Design

- Mimic iCommands
- User facing
- Modular and adaptable (e.g. new REST API)

Figure 2: Photo from pexels.com
Implementation

- **Curl in R**
 - R interface to libcurl *curl* (Ooms 2023a)
 - Wrapper *httr2* (Wickham 2023) for *curl* and *jsonlite* (Ooms 2023b)

- **Development + Testing**
 - iRODS Docker demo-server
 - Testing with mocking *httptest2* (Richardson 2022)
 - R CMD check without internet (simulate CRAN checks)
Source files on the iRODS GitHub organization

Maintainers
- Martin Schobben, Vienna University of Technology, Austria
- Mariana Montes, KU Leuven, Belgium

Website: https://irods.github.io/irods_client_library_rirods
Future

- Submitted to CRAN
- Upgrade in server side buffer size REST API to several Mb
Demonstration

Requirements:

▶ Remote iRODS server with iRODS C++ REST 0.9.3
▶ Demo server which requires docker and docker-compose
▶ $\geq R\ 4.1$ and readr, dplyr, and devtools.

Case study:

▶ Data set on iRODS GitHub stats
▶ https://raw.githubusercontent.com/FAIReLABS/iRODS4R/main/posts/welcome/data/irods_repos.csv
References