
Safeguard your sensitive data in iRODS
using data encryption feature available in 

GoCommands

May 29, 2024
iRODS User Group Meeting

Nirav Merchant
CyVerse /

University of Arizona
nirav@arizona.edu

Tony Edgin
CyVerse / 

University of Arizona
tedgin@arizona.edu

Edwin Skidmore
CyVerse / 

University of Arizona
edwin@cyverse.org

Illyoung Choi
CyVerse / 

University of Arizona
iychoi@arizona.edu



Working with sensitive data

• Strict confidentiality required by law

• Example: HIPPA (Health Insurance Portability and Accountability Act) for life sciences

• Data must be encrypted during storage and transmission

• Simple and effective data security policy

• End-to-end encryption of selected data

• Consistent encryption methods for data sharing



iRODS as a storage solution for sensitive data

• Built-in iRODS security measures

• Authentication (PAM)

• Role-based Authorization

• Audit Trails

• Data Transfer Encryption (SSL)

• Responsibilities of infrastructure provider

• Encrypt data during storage

• Ensure user compliance with security policies



Encryption feature in GoCommands
• Strong data encryption

• Encrypt and decrypt both file names and content

• Seamless operations (user-friendliness)

• Encrypt on “put”, decrypt on “get”

• “ls” command displays original file names for authorized users

KeyAlgorithmMode

PasswordAES-256-CTRAES

SSH Public/Private KeysRSA + AES-256-CTRSSH



Configurations in GoCommands
• Encryption mode

• Default is “SSH”

• “--encrypt_mode” flag to change mode

• SSH RSA keys for encryption/decryption (SSH mode)

• Default is “~/.ssh/id_rsa” or “~/.ssh/id_rsa.pub”

• “--encrypt_pub_key” and “--decrypt_priv_key” flags to locate key files

• Note: a public key for encryption, a private key for decryption

• Password for encryption/decryption (AES mode)

• “--encrypt_key” and “--decrypt_key” flags



Configure a collection to require data encryption

• Set iRODS AVUs:

NoteValueAttribute

“true” or “false”“encryption::required”

Default encryption mode“AES” or “SSH”“encryption::mode”



Enforcing data encryption with iRODS Rules

Check AVUs

“encryption::require”

Check file extensions

hello.txt 
aqNisLexbJ7+A5I9S40xilt_+iUQPspwrw.rsaaesctr.enc



Implementation of iRODS Rules
• PEPs for creating data objects

• Reject data objects that are not encrypted

• pep_api_data_obj_create_pre / pep_api_data_obj_create_and_stat_pre / pep_api_data_obj_open_pre / 

pep_api_data_obj_open_and_stat_pre

• pep_api_data_obj_put_pre / pep_api_data_obj_copy_pre / pep_api_data_obj_rename_pre

• PEPs for creating sub-collections

• Copy parent collection’s AVUs to inherit

• pep_api_coll_create_post / pep_api_data_obj_rename_post

• PEPs unhandled yet

• pep_api_struct_file_ext_and_reg_pre: creates many sub-collections and data objects, “StructFileExtAndRegInp” 

serialization bug in iRODS < v4.3



Quick Demo - put



Quick Demo - get



Quick Demo – encryption enforcement



Use-case: CyVerse Health

• iRODS-based data storage

• SSL for data transfer encryption

• GoCommands as a data access and encryption tool

• SFTP (via SFTPGo for iRODS) for easy data access using GUI Tools (FileZilla / Cyberduck)

(Encryption is not yet supported, future work)



Conclusion
iRODS as a secure data storage for sensitive data

• Encrypted data storage
• Enforce user compliance

Data encryption feature in GoCommands
• Strong data encryption for both file names and content
• Encryption modes: SSH (SSH RSA keys) or AES (password)

Data encryption enforcement in iRODS
• iRODS Rules reject creation of unencrypted files
• AVUs set to collections enforce encryption
• No additional setup required for users



Source code

GoCommands: https://github.com/cyverse/gocommands

iRODS Rules for encryption: https://github.com/cyverse/ds-

playbooks/blob/main/irods/files/rule-bases/ipc-encryption.re



Questions?


