
An Experimental iRODS Client in 
Rust

By Phillip Davis



● MsCS, App State ‘24
● Interned with iRODS 

Summer ‘22 and ‘23
● Currently freelancing



1. Overview
2. Quick tour
3. Housekeeping / 

Moving forward



Why Rust?

● Memory safety (~= data 
safety)

● Reliable concurrency.

● Performance.

● Rich type system.

● Absurdly powerful macro 
system.

● Because I like it!



What’s the deal 
with this client?

● Async everywhere

○ Only runs under Tokio

● Easy to change protocol 
encoding.

● Designed with longer-running 
connections in mind.

● Write your rules in Rust.

● (Probably not cross-platform)



The experiment





Caveats / Future 
Directions



The Bad: or, The Path to Production-Readiness
1. Well-defined error-handling strategy.

2. Comprehensive integration tests.

3. PR in flux with quick-xml.

4. More features (e.g., password-change 
algorithm)

5. Etc., etc.



The Good: or, Nice-to-haves
1. “Statically” checked rule syntax (via 

compile-time execution)

2. Statically sized connection buffers 
might allow arena allocation (inspired 
by battlesnake_game_types crate)



Join me!
- Recently open-sourced the project. It lives here: 
https://tinyurl.com/irods-rust-github

- Issue #7 is a (subject-to-change) list of issues 
that are important to resolve before issuing an 
initial release.

- Anyone who wants an iRODS Rust client is 
welcome to contribute. Right now it’s just me.

https://tinyurl.com/irods-rust-github


Thank you.


