
Markus Kitsinger
Software Developer and Build Engineer
iRODS Consortium

May 28-31, 2024
iRODS User Group Meeting 2024

Amsterdam, Netherlands
1

Versioning changes

Recap of plans

Current progress

Externals

libstdc++

New Features

Version Freezes

Other things that happened

Notable yaks in need of shaving

Other considerations

Overview

2

Following the 4.3.x series, major releases of iRODS will be versioned 5.0, 6.0, 7.0, etc

Minor releases will be versioned 5.1, 5.2, 5.3, etc

Gnome-style development versioning - between releases, code in repository will have

development version numbers

x.9# for major releases/main branch (ex: 4.90 is development version of 5.0.0)

x.y.9# for minor releases/stable branches (ex: 5.1.92 is development version of 5.2.0)

Custom CMake package version file

Takes into account development versions

Takes into account the versioning change for 5.0

More info in issue #7532

Versioning changes - iRODS 4.4 is now 5.0

3

https://github.com/irods/irods/issues/7532

Recap of Plans

We will shift to using the standard tools (and) for packaging

 will be used to maintain debian packages, -style

Possibly rpm packages as well, still investigating

We will not provide an externals package if the distribution already provides a usable package

Debian and rpm source packages will be provided in our repositories

We will follow established patterns for setting up service accounts

We will install our libraries in the normal locations

We will provide default systemd unit(s)

We will build against libstdc++

We will decouple the iRODS buildsystem from externals packaging implementation details

dpkg-buildpackage rpmbuild

git-buildpackage Salsa

4

https://manpages.debian.org/bullseye/dpkg-dev/dpkg-buildpackage.1.en.html
http://ftp.rpm.org/max-rpm/ch-rpm-b-command.html
https://wiki.debian.org/PackagingWithGit
https://salsa.debian.org/

We decided to transition to libstdc++ before moving away from fpm/CPack.

This will allow us to reduce the number of externals packages we provide,

which will facilitate the transition to standardized packaging for externals.

This also meant putting a lot more effort into the current externals system

than I really wanted to. More on this in a bit.

iRODS 5.0 will be built against libstdc++.

Some externals are now used in CMake via find_package.

mungefs buildsystem completely decoupled from externals.

Current Progress

5

In order to build iRODS against libstdc++, externals needs to

build against libstdc++ as well.

iRODS 4.3.x is still built against libc++, so we have to support

both until 4.3 is EOL.

Some packages now have two variants, one for libstdc+++

and one for libc++.

Externals - libstdc++

6

Externals - New and Removed Packages

New package - jwt-cpp - Added for HTTP API provider client

Several packages removed
cpr - no single version compatible with all versions of curl we must support

elasticlient - built on top of cpr

jansson - replaced by nlohmann-json (json)

pistache - only used by one project, which has now been sunset

libs3 - all relevant code has been merged into the s3 resource plugin

aws-sdk-cpp - originally added for s3 resource plugin, but was never used

Exploring removing more
libarchive - distro-provided packages should be sufficient once EL7 is dropped ()

redis - distro-provided packages should be sufficient once EL7 is dropped ()

zeromq4-1 - distro-provided packages should be sufficient once EL7 is dropped ()

json - distro-provided packages may be sufficient already ()

#7286

#7478

#7479

#7726 7

https://github.com/irods/irods/issues/7286
https://github.com/irods/irods/issues/7478
https://github.com/irods/irods/issues/7479
https://github.com/irods/irods/issues/7726

Externals - New Features

Each package now declares dependencies per-distribution per-version.

New source patch system

Initially added for Ubuntu 24.04 support, as clang required changes a little

too complex for basic shell scripting to handle.

We now pull in some patches from distribution packages.

Package revisions are now properly supported, allowing for in-place upgrades.

8

Externals - Version Freezes

We want to transition to distro-provided packages where possible. In order to

facilitate this, we have implemented a soft version freeze on most of our externals.

Bumping the version of an externals package that has a distro-provided

equivalent (or is likely to have one in the future) needs to be sufficiently justified.

Externals packages unlikely to ever have a distro-provided equivalent (such as

jwt-cpp) are free from this restriction.

This presents its own challenges we have had to overcome:

Our clang externals package supports C++ coroutines, but we cannot use

them due to an incompatibility with libstdc++.

Our cmake externals package does not support the newer versions of Python

used on some distributions.

9

Other Things That Happened

s3 resource plugin has absorbed libs3.

s3 resource plugin has been relicensed to LGPLv3+/GPLv2+.

Python rule engine plugin build has been properly parallelized.

Development environment Dockerfiles use new Dockerfile syntax.

Development environment core builder now uses ccache.

We now leverage CMake object library targets to improve our
buildsystems in a number of ways.

10

Notable Yaks In Need of Shaving (that we know about)

Non-package installation - make install should be enough

Side-by-side database plugin installation ()

URI json schema IDs ()

File/directory ownership

File/directory location

Default configurations (or something along those lines)

Unprivileged builds in CI and development environment

CMake target names

Removal of externals plumbing in CMake

#5999

#6283

11

https://github.com/irods/irods/issues/5999
https://github.com/irods/irods/issues/6283

Other Considerations

How will this affect development workflows?

How will we document this?

How will CI need to change?

When are cleanroom builds needed and how will we support them?

How will we verify our dependency minimum versions?

How often should we do this?

Presently, a lot of functionality for standing up and cleaning up after iRODS is
handled by Python scripts. How much of this should be migrated into iRODS
proper, and how?

How long should we maintain legacy CMake target aliases?

How will the upgrade process be affected?

12

Thank you!

Questions?

13

