RODS.

iRODS Build and Test v9.
Automation via GitHub and Kubernetes

A presentation by:
Phil Owen
POwen@RENCI.org

iRODS User Group Meeting 2024
May 28-31 - Amsterdam, Netherlands

. Scan to follow along or for

\ review later
rencl

IRODS Testing - What to expect in this discussion

Presentation outline;

IRODS testing - Provide some context and our motivation.

Solution - Using Kubernetes and GitHub to craft a novel way to test iRODS.

Impact - How our work has had a positive effect.

Future vision - Where do we go from here.

IRODS Testing - Motivation

Improve iIRODS testing performance and ease of use.

Testing iIRODS presents a number of challenges. Creating and maintaining
complex test environments can be time-consuming.

We came up with this feature wish list:

Scale to accommodate a growing development audience.
Automatically provision iRODS provider/consumer topologies.
Support automation and integration with other services.

Support standardized testing environments and strategies.
Support the timely distribution of evolving testing paradigms.
Provide an automated forensic analysis of test results.

Provide automatically generated code certification documentation.

IRODS Testing - Infrastructure overview

e GitHub - Source code repository. Automated iRODS package build/push and
testing requests are spawned by GitHub Actions.

e Docker container image registry - Storage for Docker images of operating
systems, databases and components.

e Kubernetes cluster - On-prem with two namespaces assigned to iRODS
(development and production).

e Web-based interfaces - Two user interfaces and 17 web-services implemented
for this application (FastAPl and React).

e Application supporting services - Application services and components are
implemented as Kubernetes deployments and cronjobs.

e File systems - Storage for iRODS package builds, testing results and forensics.

IRODS Testing - Solution landscape (high-level)
GitHub IRODS
package FastAPI Ul DBMS
store
Developer
or tester
Test Web K8s Job
request services Supervisor
Docker
image K8s cluster
Environment !
registry

What is Kubernetes (K8s)

Kubernetes is a portable, extensible, open source platform for managing
containerized workloads and services, that facilitates both declarative
configuration and automation.

The name Kubernetes originates from Greek, meaning helmsman or pilot.
K8s as an abbreviation results from counting the eight letters between the "K"

and the "s".

Google open-sourced the Kubernetes project in 2014.

kubernetes

Source: https://kubernetes.io/docs/concepts/overview/

https://kubernetes.io/docs/concepts/overview/

Why Docker containers and Kubernetes?

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Source: https://kubernetes.io/docs/concepts/overview/

https://kubernetes.io/docs/concepts/overview/

iIRODS Testing - Application services on K8s

e KB8s Job Supervisor - Workflow manager that creates and monitors K8s
jobs for each data processing component.

e Job Supervisor settings Ul - FastAPI application used to provide web
service interfaces that provide access to configurations and data.

e Job Supervisor database - PostgreSQL DBMS to store the Job
Supervisor configurations and test requests.

e iRODS Test request Ul - A web interface (React.js) where a
developer/tester can manually make and/or monitor a testing request.

e Cron Jobs - Scheduled processes launched for data archival and
database backups.

IRODS Testing - K8s Job supervisor features

The iRODS Job supervisor is a workflow manager that has been
implemented on a K8s cluster to provide:

Programmatically interfaces with K8s using the K8s API.
Creation and sequencing of K8s jobs in order (or in parallel).
Monitors each K8s job from start to completion.

Removes job and resource allocations on completion.

Error handling including pod retries and resource waiting.

Job characteristics are stored in a database which are adjustable
via web services or Ul (FastAPI).

IRODS Testing - Job Supervisor process flow

New testing iRODS Job Supervisor
request impulse

!

Resource
management

Next step or

Kubernetes worker pod(s) Error handling

Data persisted Next active
to file systems, DBs and Uls request

IRODS Testing - Job Supervisor workflow features

Each job supervisor workflow type equates to an iRODS topology. A
workflow is a linked list of process step with configuration definitions that
include:

A Docker image.

Run-time resource allocation (memory, cpu, ephemeral space, etc.).
NFS and K8s file system volume mounts.

Parameterized component command line(s).

Multiple containers per pod and parallel jobs are supported.

K8s cluster node affinity is supported.

K8s Pod failure policies are supported.

IRODS Testing - Workflow components

Initial data staging - A process that provisions the run with a file system data store
and pod initialization scripts into the K8s working environment.

IRODS Database - A database whose type and version is specified by the test
requestor.

IRODS Provider - AiRODS provider deployment that is provisioned with various
IRODS packages and tests to perform.

IRODS Consumer - AiRODS consumer deployment that is provisioned with various
IRODS packages and tests to perform.

Test result forensics - A process that collects test results and processes them for
return back to the requestor.

Final data staging - A process that compresses and moves finalized data, updates
databases, and removes intermediate data.

IRODS Testing - The Positive effect

Our proof-of-concept of automating the building and testing iRODS using GitHub
and Kubernetes services, along with the K8s Job Supervisor, has been achieved.

Automation is everything. GitHub code pushes initiate the building of iRODS
packages and can make an iRODS test request. The Job Supervisor creates an
IRODS environment on Kubernetes where test suites are executed. The
Kubernetes implementation has improved the overall testing time by supporting
numerous parallel runs.

The iIRODS Development teams will certainly appreciate the reduced time from

‘development to test results’ and quicker iIRODS environment deployments that
this infrastructure provides.

IRODS Testing - Future vision

Things on the horizon

Make this solution publicly available ASAP.

Incorporate and support additional complex topologies.

Support for more operating systems and databases.

Increased level of forensic analysis captured.

Performance improvements.

Test suites revisited to support group or individual test selection.
Address shortcomings that came along with K8s deployments.

Acknowledgements, Questions?

IRODS Testing Team

Kory Draughn
Alan King
Phil Owen
Terrell Russell

Scan to access this
presentation

Appendix A - Solution data flow diagram

dfd iRODS Testing - Data Flow diagram
iRODS Testing - Data flow diagram, Revised - 02/15/2024
This diagram represents a single iRODS testing instance.
The Job Supervisor file system houses all file data
generated by test runs. Specifically, it stores logs, transient
data and test results for every run request. itis also used to
iRODS Job Supervisor workflow step components (K8s jobs/pods) store the nightly database backups.
The Job Supervisor is a workflow manager that F P2
interfaces diractly to Kubernates to spawn Gt iRODS iRODS Result Final < iRODS Job Supervisor file system (K8s)
complete iRODS test environments on demand. database Provider forensics staging
Automatad operations are performed on a
configurable schedule.
iRODS Job v
Supervisor ’ :
! Infrastructure Services (K8s)
iRODS iRODS
TOPOLOGERSS database Provider DB backups
= >
iRODS Job Cronjobs Database(s)
Supervisor DB " —>
/7 Data archival and
’ Automatic Test request X purge
1
Each iRODS workflow step component is created from 3 File systems
GitHub actions. base docker image. It is then initialized, configured and
RODS Test Request Ul 2 X ,
i ‘est Reque: [={ code repasitory }- | build iRODS provisioned with iRODS packages and tools necessary to N
packages and perform various duties. SR N
launch test runs. it DN Docker
L e e . Storage for pre-built Docker images
& POSoe used by workflow step processes.
J GitHub Actions will be used to build iRODS packages e
A T T F and place them on the iRODS package store. In some Afile system where compiled iRODS packages are stored.
se“::"s':oh:: b su::r:i:o rs various K cases, a test request is made automatically.
) ; ! S Diagram Key
iRODS Testing J Development i
Administrator collaborators Atest requestor has the ability to select test parameters:
~The DBM; ion. 5
Ths user interface will supply view into the RSBk i A A O A o T)\ S| el i
initiation, progress and final results of 3 test request. “Launchall possibletests or justa subsat.

Appendix B - Ul Screenshots

iRODS. Test Request

Create a test run View test run progress

Request name Enter a request name Test environment
Enter a package directory name v/] Test executor type PROVIDER CONSUMER
Operating system Select an operating system ~ Database type Select a database type ~

test_all_rules.Test_AllRules

Package directory

test_all_rules.Test_JSON_microservices
test_all_rules.Test_msiDataObjRepl_checksum_keywords
test_auth.Test_Auth
test_auth.test_iinit
test_catalog
Tests test_collection_mtime
test_configuration_reload
test_control_plane
test_delay_queue.Test_Delay_Queue
test_delay_queue.Test_Execution_Frequency
test_dynamic_peps
test_iadmin_set_grid_configuration.test_get_grid_configuration
test_iadmin_set_grid_configuration.test_set_grid_configuration
test_iadmin.Test_ladmin

Submit your request when ready

Submit request

Debug mode

iRODS. Test Request

Create a test run View test run progress
Test request name ~ EEIRENY

“all-tests" testing complete... [T A"

“Request name™: "all-tests",
“Testing Jobs™: {
“Total": 23,
"Complete”: 23
b2
“Jobs™: [
{

“ID": 32,

“Status”: "New run accepted for all-tests, staging running, staging complete, database running, database configuring,
provider running, forensics running, provider configuring, forensics complete, final-staging running, final-staging
complete, removing any remaining services, run complete in 111 minutes and 17 seconds”,

“Results”: {

“irods.test.test_all_rules.Test_AllRules-20240410181707": {
"name": "irods.test.test_all_rules.Test_AlIRules-20240410181707",
"tests™ "125",
“file”

irods/test/test_all_rules.py”,

me": "4048.057",
"timestamp”: “2024-04-10T719:24:35",
“failures™: "0"

Version: v0.0.24 iR About
Copyright © iRODS Consortium 2024

“errors™:

“skipped <

"error_details": [Y
Version: v0.0.24 iR About

Copyright © iRODS Consortium 2024

Appendix B - Ul Screenshots (cont.)

iRODS. Test Request

Create a test run View test run progress

This application is the user interface to the iRODS Test request system.

The iRODS Test request system represents an integrated environment that spans numerous
technologies and services:

© GitHub code repositories and actions.
o Docker container image registry.

o Kubernetes cluster.

o Web-based interfaces.

© Supporting application services.

Motivation: Improve iRODS testing performance and ease of use.

Design Goals - Primary
= Speed up test runs by running existing iRODS tests on ‘more’ machines in parallel.
= iRODS Development team gets ‘hands-free’ testing automatically or upon request.
o Team visibility of ongoing testing and progress.

Design Goals - Secondary
o GitHub Action integration for per pull-request and support merged test runs.
o External visibility of ongoing testing progress.
o Automated builds in GitHub.

Technology list of the iRODS Test request system:

> DBMS Docker ° User interface
= PostgreSQL v15.4 = Engine v25.0.3 = Node.js v20.11.1
= Development environment = APlv1.44 = Npm v10.5.0
= PylLintv3.1.0 o Kubernetes = Reactv18.2.0
= PyTest v8.1.1 = APIv28.1.0 = ReactStrap v9.2.2
= Pythonv3.12.2 = Helm v3.12.1 © Web-services
= Clientv1.28.7 = FASTAPI v0.110.0

= Serverv1.27.10

iR

Copyright © iRODS Consortium 2024

>
o,
©
Ic
=

Version: v0.0.24

Appendix C - Service Screenshots

— powen@sterling ~
iRODS-K8s Settings &=
Status
default A~

GE] /get_sv_component_versions GetSv Component ayv
GE /get_environment_type_names Get Environment Type Na av
GE] /get_test_names Gt av
GE] /get_dbms_image_names Gst Dbms Image Names av
GE /get_os_image_names Gt O; av
S8 /get_test_request_names GetOs av
=38 /get_run_status/ GetRun Status av
S8 /get_job_order/{workflow_type_name} av

/reset_job_order/{workflow_type_name} Re: av
GE /get_job_defs ayv
3 /get_log_file_list GatTi a8V
GE /get_log_file/ GetThe [B
GE /get_test_result_file v

/superv_workflow_request/{workflow_type}/run_status/{run_status} Superv Wor ayv

/run_id/{run_id}/status/{status} SetThe Run Stat av

/workflow_type_name/{workflow_type_name}/job_type_name/{job_type_name}/next_job_type/ ok

{next_job_type_name} Job Order U

Appendix D - Various Links

e iRODS K8s/Helm deployments: https://github.com/irods/irods_k8s

e iRODS Job Supervisor code: https://github.com/irods-contrib/IRODS-K8s-Supervisor

e iRODS Job Supervisor Settings Ul code: htips://github.com/irods-contrib/iIRODS-K8s-Settings

e iRODS Data Staging code: https://github.com/irods-contrib/IRODS-K8s-Staqging

e iRODS Test result forensics code: https://github.com/irods-contrib/IRODS-K8s-Forensics

e iRODS Test Request Ul code: hitps://github.com/PhillipsOwen/irods-testrequest-ui
e iRODS Data flow diagram: htips://drive.google.com/file/d/1-19gFQKvz5u_k3LyRSz66wjbJHUId2AH/view

e iRODS Job supervisor diagram: https://drive.google.com/file/d/1xQQsOI3iuJFVnul66b-bpdxS_IXYAGhG/view

https://github.com/irods/irods_k8s
https://github.com/irods-contrib/iRODS-K8s-Supervisor
https://github.com/irods-contrib/iRODS-K8s-Settings
https://github.com/irods-contrib/iRODS-K8s-Staging
https://github.com/irods-contrib/iRODS-K8s-Forensics
https://github.com/PhillipsOwen/irods-testrequest-ui
https://drive.google.com/file/d/1-I9qFQKvz5u_k3LyRSz66wjbJHUid2AH/view
https://drive.google.com/file/d/1xQQsOI3iuJFVnul66b-bp4xS_lXYA6hG/view

