
Streamlining iRODS:

Kafka-based Data Pipelines

Peter Verraedt

Jo Wijnant

Scope

• Needs:

• Index collections and objects in OpenSearch for global search

• Continuously monitor project usage (w.r.t. quota)

• Integrate metadata in file system snapshots for easy restores

• Constraints:

• Avoid need to periodically run heavy queries on (mysql) database

• NOT: enforcing policies

• Critical to trigger on all possible changes

• Listen on all peps is probably possible but can contain duplicate peps/easy to miss

specific client triggered changes

• If changes can be missed, recreates need for periodic queries

ICTS2

Idea

• Don't create iRODS plugin to listen on all peps

• because goal is explicitly not enforce a policy to e.g. restrict certain actions

• Listen on the iRODS catalog = (mysql) database instead

• Use Debezium to capture row by row changes

• Debezium supports mysql/mariadb/postgres/oracle/...

• Changes are stored in Apache Kafka

ICTS3

Apache Kafka

• Stores topics with 'messages'

• A topic is a key-value store, for each key multiple messages can be added

• A tombstone (null) message for a key can be stored to indicate removals

• A topic is stored in multiple partitions, a hash of the key is used for mapping

to a partition

• One can consume a topic for newly appended messages = latest changes

• For today’s talk, all topics are compacting: from time to time, messages are

cleaned up so that only the last one for each key is kept

ICTS4

https://kafka.apache.org

https://kafka.apache.org/

Debezium connector

• Initial READ of tables + “slave” of mysql database to see row-by-row changes

• Output as topics:

• From N databases for N zones to 5 topics containing data for all zones

ICTS5

key: database name + #object_id
value: current values

or tombstone in case of deletion

https://debezium.io

https://debezium.io/

Schema

ICTS6

1 mysql instance
N identical structured database per irods zone

Debezium connector
Read changelog of Mysql
Output to a kafka topic per table type

Apache Flink see next slides

Applications

Apache Flink

• Data Processor

• Can take various inputs, a.o. Kafka topics

• Has SQL-like language to manipulate and combine information in topics

• Has possibility to plug in python processors

• Can output to various systems,

a.o. Kafka, OpenSearch

ICTS7

https://flink.apache.org

https://flink.apache.org

Flink SQL

ICTS8

GROUP BY

JOIN

Flink SQL

ICTS9

Flink SQL

SET 'pipeline.name' = 'irods-cdc-data'; SET 'parallelism.default' = '4';

EXECUTE STATEMENT SET

BEGIN

INSERT INTO data_enriched SELECT

 d.zone, d.data_id as `object_id`, d.coll_id, d.data_name as name,

 c.path || '/' || d.data_name as `path`, d.data_owner_name as owner_name,

 d.data_size, d.data_is_dirty, d.create_ts, d.modify_ts,

 a.reader_ids, a.owner_ids, m.metadata, c.metadata as col_metadata

FROM

 collections_enriched c INNER JOIN cdc_r_data_main d ON d.zone = c.zone and d.coll_id = c.object_id

 LEFT JOIN metadata_by_object m ON d.zone = m.zone and d.data_id = m.object_id

 LEFT JOIN access_by_object a ON d.zone = a.zone and d.data_id = a.object_id;

END;

ICTS10

Application 1: OpenSearch

• Benefits over indexing rule engine:

• Uniform flow across all iRODS zones

• In principal no re-indexing needed

• No additional load on iRODS server

• 5 million collections

• 193 million data objects

• < 19 hours initial processing time (can scale with resources)

ICTS11

Application 2: Project usage

• We have a Kafka topic continuously

containing the current project usage

• Every second the last message per project

is written as irods metadata of

corresponding group

• For quota enforcing/reporting, irods

metadata can be looked up

ICTS12

Application 3: Metadata as file system extended attributes

• Goal: incorporate iRODS metadata in file system snapshots

• Not for: backup/restore of complete iRODS zone

• But for: partial restores of data (no manual extraction of database dumps)

• Consumer of DATA_ENRICHED and COLL_ENRICHED

• Format metadata as extended attributes and set it on corresponding file on

disk if it exists

• Some additional logic to account for the fact that processing can be delayed

ICTS13

Next steps: Audit pipeline

ICTS14

• From the database changelog, we

know all changes

• Lacks who triggered change

• We run the audit plugin

(kafka instead of rabbitmq)

• Lacks all changes in database

(e.g. recursive chown)

• Avoid MSI, use PRC

• Future work: try to link both

• “Guess” which logs correspond

• Expectation for audit logs is

to be 100% accurate

Lessons learned

• Not so easy to set up

• Avoid exceeding disk space (or start over)

• Assign enough RAM space (or things are slow)

• Turn off snapshot locking (or mysql database hangs)

• Check whether mysql connector still runs

• Apply trick when no user activity happens

ICTS15

	Slide 1: Streamlining iRODS: Kafka-based Data Pipelines
	Slide 2: Scope
	Slide 3: Idea
	Slide 4: Apache Kafka
	Slide 5: Debezium connector
	Slide 6: Schema
	Slide 7: Apache Flink
	Slide 8: Flink SQL
	Slide 9: Flink SQL
	Slide 10: Flink SQL
	Slide 11: Application 1: OpenSearch
	Slide 12: Application 2: Project usage
	Slide 13: Application 3: Metadata as file system extended attributes
	Slide 14: Next steps: Audit pipeline
	Slide 15: Lessons learned

