
Kory Draughn
Chief Technologist
iRODS Consortium

June 17-20, 2025
iRODS User Group Meeting 2025

Durham, NC
1

Motivation

Challenges with Jargon ...

It is large and hard to maintain

Its design makes it difficult to support certain patterns

Too high-level and abstract, results in a lack of control

API usage isn't obvious

We want ...

An easy-to-maintain Java library for developers

To offer developers features only available in C and C++

To publish Java code at Maven Central Repository

2

What does this mean for Jargon?

Jargon is officially deprecated.

Applications relying on Jargon need to migrate to irods4j.

New applications need to consider using irods4j.

Jargon is limited to updates in support of Metalnx.

3

What does irods4j provide?

Hosted at

Easy to use while offering low-level control when needed

Dedicated implementations for and

Offers low-level and high-level APIs

Low-level API intentionally mirrors the iRODS C API

High-level API intentionally mirrors the iRODS C++ API

Documentation for the C API is documentation for irods4j
native and pam_password authentication schemes are supported

Socket options are configurable

Supports SSL/TLS for secure communication

Maven Central Repository

Java 17 Java 8

4

https://central.sonatype.com/artifact/org.irods/irods4j
https://github.com/irods/irods4j/tree/main
https://github.com/irods/irods4j/tree/java8

Design

Primary goals are maintainability and control
Uses the XML protocol for communication
Uses the JSON library for serialization of packing instructions
Mirroring the C API future-proofs the library

Jackson

var host = "localhost";
var port = 1247;
var zone = "tempZone";
var username = "rods";
var errInfo = new RErrMsg_PI();

RcComm comm = IRODSApi.rcConnect(
 host, port, username, zone, Optional.empty(),
 Optional.empty(), Optional.empty(), Optional.of(errInfo));
IRODSApi.rcDisconnect(comm);

1
2
3
4
5
6
7
8
9

10

5

https://github.com/FasterXML/jackson

Examples - Connecting to a server

try (var conn = new IRODSConnection()) {
 conn.connect(host, port, new QualifiedUsername(username, zone));
 conn.authenticate("native", password);

 // Do work.
}

1
2
3
4
5
6

 provides an easy way for developers to connect to an
iRODS server.

It manages a single and is inspired by the C++
irods::client_connection library.

IRODSConnection

RcComm

6

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/connection/IRODSConnection.java
https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/low_level/api/IRODSApi.java#L101

Examples - Connection Pooling

// Create a pool containing 10 connections.
try (var pool = new IRODSConnectionPool(10)) {
 // Authenticate each connection in the pool.
 pool.start(host, port, new QualifiedUsername(username, zone), conn -> {
 try {
 IRODSApi.rcAuthenticateClient(conn, "native", password);
 return true; // Let the pool know authentication was successful.
 } catch (Exception e) {
 return false; // There was an issue, DO NOT use the pool!
 }
 });

 try (var conn = pool.getConnection()) {
 // Do work.
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 manages a pool of connections.IRODSConnectionPool

Developers can use this with to write client-side server applications
similar to the iRODS HTTP API.

rcSwitchUser

7

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/connection/IRODSConnectionPool.java
https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/low_level/api/IRODSApi.java#L787

Examples - Listing the contents of a collection

var conn = // Our connection to iRODS.
var collection = // Absolute path to a collection.

for (var e : new IRODSCollectionIterator(conn, collection)) {
 // Print out the logical path of "e".
 System.out.println(e.path());

 // Inspect "e" for information about the collection entry.
}

1
2
3
4
5
6
7
8
9

 allows developers to iterate over a
collection's contents.

 can be used to iterate over
subcollections.

IRODSCollectionIterator

IRODSRecursiveCollectionIterator

8

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/vfs/IRODSCollectionIterator.java
https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/vfs/IRODSRecursiveCollectionIterator.java

Examples - Writing a data object

var conn = // Our connection to iRODS.

var logicalPath = // Absolute path to a data object.
var truncate = true;
var append = false;
var data = "irods4j is easy to use.";

// Create a new data object and write some data to it.
try (var out = new IRODSDataObjectOutputStream(
 conn, logicalPath, truncate, append)) {
 out.write(data.getBytes(StandardCharsets.UTF_8));
}

1
2
3
4
5
6
7
8
9
10
11
12

 gives developers a simple and familiar way to
write data to a replica.

Built on top of and is inspired by the C++
irods::dstream library.

IRODSDataObjectOutputStream

IRODSDataObjectStream

9

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/io/IRODSDataObjectOutputStream.java
https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/io/IRODSDataObjectStream.java

Examples - Reading a data object

var conn = // Our connection to iRODS.

var logicalPath = // Absolute path to a data object.
var buffer = new byte[512];

try (var in = new IRODSDataObjectInputStream(conn, logicalPath)) {
 // Fill "buffer" with data from the data object.
 in.read(buffer);
}

1
2
3
4
5
6
7
8
9

 gives developers a simple and familiar
way to write data to a replica.

Built on top of .

IRODSDataObjectInputStream

IRODSDataObjectStream

10

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/io/IRODSDataObjectInputStream.java
https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/io/IRODSDataObjectStream.java

Examples - Rule Execution

var conn = // Our connection to iRODS.

var name = "irods4j";
var role = "Java client library for iRODS";

// Set the rule text, inputs, outputs, and rule engine plugin
// instance to use.
var ruleArgs = new RuleArguments();
ruleArgs.ruleText = String.format(
 "*name = '%s'; *role = '%s'", name, role);
ruleArgs.input = Optional.empty();
ruleArgs.output = Optional.of(Arrays.asList("*name", "*role"));
ruleArgs.ruleEnginePluginInstance = Optional.of(
 "irods_rule_engine_plugin-irods_rule_language-instance");

// Execute the rule and print the values of "*name" and "*role".
var results = IRODSRules.executeRule(conn, ruleArgs);
System.out.println(results.get("*name"));
System.out.println(results.get("*role"));

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

 exposes a simple interface for executing rules.IRODSRules

11

https://github.com/irods/irods4j/blob/0.2.0/src/main/java/org/irods/irods4j/high_level/policy/IRODSRules.java

Future Work

Implement pam_interactive authentication scheme (in progress)

Document public API

Automate and expand testing

Leverage GitHub Actions for various tasks

12

Thank you!

Questions?

Give it a try, open issues, help us make it better.

0.2.0 is available today!

https://github.com/irods/irods4j

13

https://central.sonatype.com/artifact/org.irods/irods4j/0.2.0
https://github.com/irods/irods4j

