
Exploring the iRODS Native protocol, a hidden gem
Ton Smeele

Utrecht University
The Netherlands

a.p.m.smeele@uu.nl

ABSTRACT

The iRODS grid deploys a versatile protocol for client-server communications. While its XML serialization variant

is used by many client applications, the more efficient Native variant is currently only available to C-language

based clients. We discuss a design for an iRODS client library that also supports the Native protocol variant in

languages other than C. We validate the usability of our design via an example implementation in Java. This

example implementation is utilized at Utrecht University by a Java application that transfers data objects between

unfederated iRODS zones.

Keywords

iRODS, data grid, distributed client server model, communication protocol

INTRODUCTION

iRODS deploys a distributed client/server communication model. Clients send requests to an arbitrary server in the

grid. The fulfillment of such a request may require the connected server to consult other servers located in its own

grid or in a federated grid. Additionally, when the client so desires, data file content is transmitted efficiently via

peer-peer connections directly between the client and the resource server that manages the replica.

All grid communications are based on a single protocol, the Distributed Shared Collection Communication Protocol,

more commonly known as the iRODS protocol [1]. Its power and flexibility is underpinned by decades of usage,

without a need for major change. According to Arcot Rajasekar, the iRODS protocol shares its lineage with the

SDSC Storage Resource Broker (SRB), an iRODS predecessor created in 1995 [2]. Parts of the SRB protocol design

are based on a request/answer protocol that was deployed in Postgres95 [3]. To accommodate the exchange of more

complex data structures as used in SRB and iRODS, significant changes have been applied.

Before a message is exchanged, it is serialized using either Native or XML encoding. Native is the original protocol

implementation, where each element’s value is packed as a sequence of bytes [1]. This method is supported by

the C/C++ iRODS client library. For instance the iCommands communicate with an iRODS server via the native

protocol. Unfortunately, this client library is not readily available to applications written in other programming

languages. As a workaround, an XML-based serialization method has been added. Here, elements are serialized as

tagged strings. Binary data is base64 encoded. Many iRODS clients depend on the XML protocol, for instance

Jargon (Java), PRODS (PHP), PRC (Python), and the Go-iRODSClient (Go) [4][5][6][7].

Messages serialized using the Native protocol are smaller in size compared to messages encoded with the XML

protocol. The larger message size produced by XML encoding is caused by a need to encode element names as tag

in addition to the element values. In contrast, the Native protocol only encodes the element value. Furthermore,

it encodes numerical and binary data more tightly. Despite being more efficient, support for the Native variant has

remained limited to C/C++.

iRODS UGM 2025 June 17-20, 2025, Durham, NC
[Author retains copyright.]

1

https://orcid.org/0000-0001-6485-4337

What does it take to implement a client library for the Native protocol? Our study aims to answer this question by

creating a prototype of a iRODS client library in Java. We select Java, since it supports object oriented programming

with strict type checking. These capabilities facilitate a clean implementation and fast debugging.

CLIENT LIBRARY ARCHITECTURE

We design our client library as a layered architecture, shown in Figure 1. The foundation is a layer that maintains a

TCP/IP socket connection between the client application and an iRODS server. The middle layer is responsible

for sending request messages and receiving response messages efficiently across this connection. Messages are

(de)serialized using either the native or the XML protocol. The top layer implements a client application programming

interface (API), that creates a message from a client request, and translates a received message back into a response

handed over to the client. Each method present in this layer corresponds to an iRODS server supported API request

type. Request arguments are encoded as iRODS data structures. Responses are decoded to Java classes suitable for

consumption by client applications.

(optional)

use case patterns

client API and

data structures

message

serialization

client/server connection

and message exchange

Figure 1. Architecture of MyRODS client library

Some interactions, for instance the transfer of replica data, require the execution of a sequence of multiple iRODS

requests. We have developed a set of Java classes as a layer on top of the client library, to support common use case

patterns, such as user authentication and parallel data transfer.

Client/server connection and message exchange

For backward compatibility reasons, an iRODS client must always initiate an unencrypted connection. Once connected,

the client may request the server to switch to encrypted communications, and vice versa. For instance, this mechanism

is used by iRODS to securely communicate a PAM password over an otherwise unencrypted connection. We design

encrypted communications as a secure socket layered over the existing socket. The socket switch takes effect after

the response has been received and the channels are flushed.

iRODS supports communication between clients and servers with different hardware or software architectures. Regard-

less of architecture, data is exchanged in big endian format, in compliance with RFC 1700 [8]. Characters are UTF-8

encoded, in compliance with RFC 5198 [9]. To encode data types in big endian, we use the Java class ByteBuffer.

The method getBytes of the class String facilitates encoding in UTF-8 character set. When decoding, ByteBuffer

assists to meet word alignment requirements of the local architecture.

Virtually all exchanged messages use the layout shown in Figure 2. Each message consists of five components: the

header size, header, message, error message, and byte stream. Once the header size, a 32 bit integer, is read, the

receiving party knows how to read the header. The header contains data on the sizes of the remaining components,

which allows those components to be read in one go. Empty components are allowed, they have a size value of zero.

While the last component is simply a byte array, the header, message, and error message are serialized named iRODS

2

headerSize header message errorMsg byteStream

Figure 2. Exchanged message layout

data structure types. The data types of the header and error message are fixed, they are respectively MsgHeader_PI

and RError_PI. The data type of the message component varies by message type.

The iRODS protocol specifies that the header must be serialized using the XML protocol. In its first message, the

client specifies the desired serialization protocol, Native or XML, for serialization of the message and error message

components of subsequent messages. Hence a client library must always be able to support the XML protocol, while

support of the Native protocol is optional.

The XML protocol has changed slightly as of iRODS 4.2.9. To fix a confusing specification in the protocol, iRODS

now escapes an apostroph using the code ' whereas in prior releases this code would represent a backtick. The

new encoding is used only when both client and server are version 4.2.9 or later. We use the server version, reported

in an initial RODS_VERSION type response message, to choose the appropriate XML protocol variant.

Message serialization

In our message serialization layer, we deploy a strategy design pattern to implement all of the (de)serialization variants

mentioned in the previous section. Serialization is done using the class Packer while deserialization is performed by

Unpacker.

Our implementation must support the (de)serialization of six iRODS base data types: bin holds an arbitrary byte

value, char depicts a byte used as a character, str is a null-terminated variable length character array, int16 and int

are respectively 16-bit and 32-bit size integers, and double represents a 64-bit size floating point value. In practice,

the double type is used as a union to store either a floating point or, more often, a long integer value. We design an

abstract class Data, with subclasses per iRODS data type. Each instance will store a variable name and its value.

We also need to support the serialization of composed data types. iRODS provides struct along with pointer

reference and array as mechanisms to compose more complex data types from the iRODS base types. These concepts

have semantics similar to their C language pendant. iRODS annotates its data type specifications with dimension

information, so that the receiving party can allocate an appropriate amount of memory for each data element, for

instance in case of indirect references. This information is important for client library implementations in programming

languages such as C, where the programmer is responsible for memory management. As memory management is

implicit in Java, our implementation may ignore dimensions for data received. However, it will need to ensure that

any data sent does not exceed specified dimensions, for example the maximum size of a variable-length character

string must be respected. We use a composite design pattern to represent the composition of data types.

The iRODS protocol requires messages to contain instances of predefined struct types, well-known by client and

server. This approach allows messages to have a significantly smaller footprint, since details on the structure of data

do not need to be included in each message. Note that this design assumes that client and server use a sufficiently

compatible set of struct specifications.

GenQueryOut_PI = "int rowCnt; int attriCnt; int continueInx; int totalRowCount;

struct SqlResult_PI[MAX_SQL_ATTR];"

SqlResult_PI = "int attriInx; int reslen; str *value(rowCnt)(reslen);"

Figure 3. Packing instructions for struct GenQueryOut_PI and a struct it depends on

All predefined struct types are specified using packing instruction strings. The packing instruction is a ordered

sequence of element names along with their base type and dimension. Figure 3 shows the packing instruction for

3

the predefined struct GenQueryOut_PI. Instances of this struct will consist of four integers, and an array of elements

of the struct type SqlResult_PI. This example demonstrates several features of the packing instruction syntax. A

specification can be nested by referencing another struct, such as SqlResult_PI. Instead of specifying a dimension

using the literal value 50, we may reference a constant such as MAX_SQL_ATTR. To specify the dimension of a dynamic

array, which is only known at runtime, we can refer to the value of another instantiated variable (already in scope).

Note for example, how the actual value of rowCnt, received at runtime as part of a GenQueryOut_PI data structure,

will be used to drive the size of the subsequently received pointer array value in the embedded struct SqlResult_PI.

Our implementation deploys a map PackInstructionsConstants to store all constants and builds a Data structure

containing processed variables. Whenever a message is deserialized, the packing instruction of the expected data

structure is parsed by class ParsedInstruction, searching the map and processed-data structure to resolve references

as needed.

MsParam_PI = "str *label; piStr *type; ?type *inOutStruct; struct *BinBytesBuf_PI;"

Figure 4. Packing instruction for MsParam_PI includes a dependent type

In addition to the above mentioned features, packing instructions support a so-called dependent type. Here, the type

of an embedded struct is determined dynamically at runtime based on the value of an instantiated variable, similar

to the mechanism used for dynamic arrays. For this purpose, iRODS has added a meta data type piStr to the set of

data types. This name is an acronym of packing instruction string. Values of this type are variable-length character

arrays, restricted to the set of predefined struct names. Figure 4 demonstrates the use of dependent types. The

symbol ? is part of the packing instruction syntax, and indicates that the immediately following piStr variable must

be dereferenced, to obtain the name of the target struct type. In the example case, at runtime, the value of variable

type will specify the actual type of the subsequent embedded variable inOutStruct. We use the above-mentioned

map and processed-data structure to implement this behavior.

Not all parts of a data structure need to be present in a message. Absent data structure elements are indicated by

a nullpointer. The XML protocol variant serializes a nullpointer by simply omitting the tag for the corresponding

element. Not packing any structure details, the Native variant of the protocol does not have this luxery. Instead it

packs the UTF-8 representation of the string literal "%@#ANULLSTR$%" to depict a nullpointer. Note that, due to the

iRODS protocol design, a serialized nullpointer cannot be distinguished from a serialized pointer to a string that bears

a value equal to the nullpointer literal. In this odd case, we will interpret and unpack the structure as nullpointer.

Client API and data structures

iRODS communications follow a client/server model with typed messages. For instance, the first message sent by a

client is a RODS_CONNECT type message, optionally followed by a RODS_CS_NEG_T message. Once connected, API calls

use RODS_API_REQ type messages, and the server replies with RODS_API_REPLY type messages. When a client wishes

to disconnect, it sends a RODS_DISCONNECT type message.

In general, the client sends a message, to which the server replies with a response message. We have encountered

two exceptions to this rule. Firstly, the client must send two additional messages immediately after issuing a

RODS_CS_NEG_T type request message, before it may expect a response. Secondly, when the client wants the session

to end and sends a RODS_DISCONNECT type message, the server will not reply to this message. Instead, the client is

expected to disconnect the socket. To support all use cases, including both exceptions, we make the client API layer

responsible for message workflow decisions.

We design the client API as a central class Irods. Figure 5 demonstrates how Java applications instantiate this class

and perform API calls. Each method of the Irods class represents an API call and returns the message component of a

server reply as its result, transformed to Java classes more digestable for client applications. We customize the return

type per method. For instance, the rcMiscSvrInfo call will return the received reply message as a MiscSvrInfo object.

This approach facilitates compile-time type checking of client application calls. The remaining reply components,

such as the errorMsg datastructure and the byteStream data, along with the intInfo returncode contained in the

4

Irods irods = new Irods(host, port);

RodsVersion version = irods.rcConnect(proxyUser, proxyZone, clientUser, clientZone);

if (irods.error) {

throw new RuntimeException("Unable to connect, error is " + irods.intInfo);

}

MiscSvrInfo info = irods.rcMiscSvrInfo();

System.out.println("zone is " + info.rodsZone);

irods.rcDisconnect();

Figure 5. Example application using the client API

header, have a structure that is common across all API calls. They can be queried by client applications as object

attributes.

Use case patterns

We have named our client library implementation ”MyRods”1. While developing and testing MyRods, we encountered

a recurring need for certain sequences of client-server interactions. For convenience reasons, we have captured these

patterns in a few macro-level classes.

The class Hirods extends the API class Irods. It adds methods to unburden the client application of roundtrips

involved with native or PAM authentication. In addition, authenticated sessions can be cloned, for instance to support

parallel data transfers. These secondary connections are typically managed and reused via an IrodsPool class. The

Hirods method getAvus allows applications to retrieve all object, resource or user related metadata, and likewise sets

of metadata can be added to an entity using method addAvus. Further, the checkAccess method queries the server

to check if a user has the desired access to a collection or data object, similar to, although more generic than, the

iRODS microservice msiCheckAccess [10].

The class DataTransfer is an abstract class for copying the content of a file to another file. Using a strategy pattern,

the source and destination files may be specified as either an iRODS based Replica or a regular filesystem file

(LocalFile). Data transfers are not limited to put and get type operations between a file and a data object in an

iRODS zone. They can also be used to copy data between data objects in the same zone or across zones. A second

strategy pattern is deployed to influence the method used for data transfer, with implementations for single threaded

transfer and multi-threaded transfer over the zone-port.

Recently, our institute has commenced to migrate and consolidate data located on several local iRODS zones to a

single third-party managed iRODS instance. We have developed the application ipump 2, based on our MyRods client

library and patterns, to support this migration process.

Performance

We benchmark the efficiency of the Native iRODS protocol variant against the XML variant in terms of exchanged

message size.

Our test comprises of a variety of common calls: connect to an iRODS 4.3.3 server, perform a native login, request

status information on a data object, query data object names and their data size from a collection that contains one

hundred data objects, download the content of a data object, and disconnect. We run this test for both protocol

variants in turn. In our initial connect message, we specify the iRODS protocol variant to be used for the remainder

of the calls. Figure 6 outlines the header and message component size of iRODS messages that have been exchanged

1See https://github.com/tsmeele/MyRODS
2See https://github.com/tsmeele/ipump

5

https://github.com/tsmeele/MyRODS
https://github.com/tsmeele/ipump

Direction iRODS Message type Header (bytes) Message (bytes) Native

(client) Type Subtype Native XML Native XML vs XML

sent RODS API REQ AUTH REQUEST 132 132 0 0 100%

received RODS API REPLY 140 141 64 153 69%

sent RODS API REQ AUTH RESPONSE 133 134 29 119 64%

received RODS API REPLY 139 139 0 0 100%

sent RODS API REQ OBJ STAT 134 134 101 317 52%

received RODS API REPLY 140 141 74 274 52%

sent RODS API REQ GEN QUERY 133 134 81 423 38%

received RODS API REPLY 142 142 2078 7787 28%

sent RODS API REQ GEN QUERY 133 134 81 421 39%

received RODS API REPLY 142 142 1116 3789 32%

send RODS API REQ GET RESOURCE INFO

FOR OPERATION 136 136 112 328 53%

received RODS API REPLY 140 141 76 150 74%

send RODS API REQ REPLICA OPEN 136 136 104 321 53%

received RODS API REPLY 142 142 1711 2345 75%

send RODS API REQ DATA OBJ READ 133 134 36 218 48%

received RODS API REPLY 141 141 0 0 100%

send RODS API REQ DATA OBJ CLOSE 133 134 36 212 49%

received RODS API REPLY 139 139 0 0 100%

sent RODS DISCONNECT 133 133 0 0 100%

Total after connect 2601 2609 5699 16857 43%

Figure 6. Benchmark test results

after the initial connect.

The header component is always XML-serialized, regardless of the chosen protocol variant. This explains why there

is almost no difference in size, except for one character in case the message component size, a value included in the

header, requires an extra digit.

With regard to message component size, the Native protocol greatly outperforms the XML protocol, The difference

is particularly striking in calls where many data values are being exchanged, such as a general query. Interestingly,

while calls to transfer replica data do not exhibit any difference in size, the messages of the accompanying calls needed

to open or close a replica display a factor two difference between the variants.

Overall, the Native protocol variant is able to pack messages by a factor two to nearly four more efficient compared

to the XML variant, depending on the mix of API call types used.

DISCUSSION AND CONCLUSION

Our MyRods implementation of the client API library bears some limitations. The current set of implemented API

calls only supports connections from a client application to an iRODS server, it does not support connections between

servers. Parallel data transfers are only supported via the zone-port. We have not yet implemented so called portal-

based transfer, which involves the use of high-ports, as we expect this method to be deprecated in a future iRODS

release3.

Our benchmark test demonstrates that the Native variant of the iRODS protocol packs messages two to four times

3see https://github.com/irods/irods/issues/7949

6

https://github.com/irods/irods/issues/7949

more efficient compared to the XML variant. As the Native variant is only available to C/C++ based applications,

unfortunately it remains a hidden gem.

Through our design and implementation of a Java-based iRODS client API library, we have demonstrated that the

Native variant can be supported in other languages besides C/C++. The implementation in Java consists entirely of

Plain Old Java Objects (POJO) and should therefore be portable across many operating system architectures.

Initial design and prototype development of the library has taken approximately sixty hours of development time.

We have built an initial prototype to confirm, and adjust, our interpretation of the iRODS protocol specification.

Once the lower two layers were established, we continued for another several weeks to complete the client API layer

and support for the use case patterns.

Our approach, to internally use data structures that mimic the iRODS types, allowed for a rapid and consistent

implementation of message serialization. Modeling of pointers as a separate data type turned out to be an important

insight that simplified the serialization of elements.

Adding support for API calls required extensive inspection of iRODS server source code. The iRODS API is mostly

documented inline in the source code. Sometimes information is fragmented as a result of a change in development

practices since the introduction of the iRODS plug-in architecture. We recommend that iRODS returns to a more

centralized definition of pack instructions and keywords, so that they are easier to locate and reuse. In addition, more

complete, findable documentation on semantics of iRODS API arguments would be helpful for client application

developers.

We learned that replicas share sufficient properties with regular files, to be modeled as specializations of a common

supertype. More research will be needed to investigate the implications for high level client interfaces to iRODS. Can

we simplify existing interfaces by using a different paradigm? For instance, should we continue to think of the entire

iRODS zone as a filesystem? Or would it instead be appropriate to consider (and expose) each of its resources as

separate filesystems?

REFERENCES

[1] M. Wan, R. Moore, and A. Rajesekar, “Distributed Shared Collection Communication Protocol.”

https://www.irods.org/index.php/iRODS Protocol Overview, May 2008.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC storage resource broker,” in CASCON First Decade

High Impact Papers, pp. 189–200, IBM Press, 2010.

[3] M. Stonebraker and L. A. Rowe, “The design of Postgres,” in Proceedings of the 1986 ACM SIGMOD

international conference on Management of data, vol. 15, pp. 340–355, ACM New York, NY, USA, 1986.

[4] M. Conway, “Enhancing iRODS Integration: Jargon and an Evolving iRODS Service Model,” in Proceedings

iRODS User Group Meeting 2010, (Chapel Hill, NC, USA), pp. 62–66, DICE, 2010.

[5] DICE-UNC, “PHP API for iRODS.” https://github.com/DICE-UNC/irods-php.

[6] iRODS Consortium, “Python iRODS Client.” https://github.com/irods/python-irodsclient.

[7] I. Choi, J. H. Hartman, and E. Skidmore, “Go-iRODSClient, iRODS FUSE Lite, and iRODS CSI Driver:

Accessing iRODS in Kubernetes,” in iRODS User Group Meeting 2021 Proceedings, (Virtual), pp. 63–72,

iRODS Consortium, 2021.

[8] J. Reynolds and J. Postel, “Assigned numbers,” RFC 1700, RFC Editor, Oct. 1994.

[9] J. Klensin and M. Padlipsky, “Unicode Format for Network Interchange,” RFC 5198, RFC editor, Mar. 2008.

[10] A. Rajasekar, T. Russell, J. Coposky, A. de Torcy, H. Xu, M. Wan, R. W. Moore, W. Schroeder, S.-Y. Chen,

M. Conway, and J. H. Ward, “iRODS 4.1 Microservices Workbook.”

https://irods.org/uploads/2015/01/irods4-microservices-book-web.pdf, May 2015.

7

