
 1 / 15

Exploring the iRODS Native
protocol, a hidden gem

Ton Smeele
Utrecht University

 2 / 15

Agenda
● Context: the iRODS protocol
● Design & Implementation (MyRods) of Native protocol
● Performance Benchmark
● Application & Summary

(See UGM proceedings for more in-depth information)

 3 / 15

The iRODS communication protocol
● Based on client/server protocol Postgres95

– Developed in 1986
– Efficient SQL request/response communications

● Extensively changed for use with SRB and iRODS
– 1995 thru 2008, by Michael Wan
– Exchange of composed data structures
– Distributed client/server, all grid communications

● Still going strong!
– Flexible and efficient

 4 / 15

Request/response data packets

RODS_CONNECT

RODS_VERSION

RODS_API_REQ

RODS_API_REPLY

RODS_DISCONNECT

RODS_API_REQ

RODS_API_REPLY

…
..

 5 / 15

Does this log entry look familiar?

[SYS_HEADER_READ_LEN_ERR] errno []
-- message [read 0 expected 4]

 6 / 15

Common data packet structure

● IRODS data structures: int, char, str, double, struct, …
– Composed and named e.g. “GenQueryOut_PI” (similar to a schema)
– Well known by client and server → requires compatible releases!

MsgHeader message errorMessage byteStreamLen

replica data
4 bytes, length
msgHeader

serialized iRODS
data structures

 7 / 15

Exchanged data struct is serialized
● Native protocol serialization variant

– Densely packed binary representation of element values
– Implemented in the iRODS client library (used by iCommands)
– IRODS specific, client library has C/C++ binding

● XML protocol serialization variant
– Tagged string, comprises of element names + values
– Used by all non-C clients (e.g. Jargon, PRC, GO, PRODS)
– Can reuse existing XML parsing libraries

 8 / 15

How hard is it to implement the Native protocol
in languages other than C ?

 9 / 15

MyRODS layered architecture

client API and
data structures

message
serialization

client/server connection
and message exchange

- direct request/response workflow
- transform data types <-> iRODS C structures

- serialize the message components
- support for Native and XML variants

- maintain TCP/IP socket connection
- SSL socket layered on top of regular socket
- exchange of serialized messages

use case patterns - macros for common sequences of API calls

 10 / 15

Effort to realize Native protocol
● Total development time (Java implementation)

– 60 hours initial design and prototype
– 4 additional weeks to complete layers and use case patterns

● A large portion of time was spent on
– Extensive iRODS source code inspection

(iRODS API is documented inline)
– Obtain a thorough understanding of protocol specifications

(learn its implications via prototyping)

Conclusion: Implementation “client”-side of protocol in languages
other than C is perfectly doable!!

 11 / 15

Performance benchmark Native / XML
● Benchmark test executes common API calls

authenticate (native)
stat data object,
execute general query
download replica content

● Finding: Native messages pack much smaller than XML
– Efficiency ratio increases with complexity of data structure

(the number of data elements exchanged)
– Most striking difference in General Query

 12 / 15

Partial benchmark results: GenQuery

Action:
(client)

Header
Native

Header
XML

Message
Native

Message
XML

Pack ratio
Native/XML

GenQuery
request

133 134 81 423 38%

Response 142 142 2078 7787 28%
GenQuery
Close req.

133 134 81 421 39%

Response 142 142 1116 3789 32%

SELECT DATA_NAME, DATA_SIZE WHERE COLL_NAME LIKE “path”

Initial query request returns response with column headings and 100 rows
Close query request returns response with column headings and 0 rows

all serialized component sizes are in bytes

 13 / 15

Partial benchmark results: “iget”

Action:
(client)

Header
Native

Header
XML

Message
Native

Message
XML

Pack ratio
Native/XML

get resc 136 136 112 328 53%
(response) 140 141 76 150 74%
open 136 136 104 321 53%
(response) 142 142 1711 2345 75%
read 133 134 36 218 48%
(response) 141 141 0 0 100%
close 133 134 36 212 49%
(response) 139 139 0 0 100%

GET_RESOURCE_INFO_FOR_OPERATION, REPLICA OPEN, DATA OBJ READ, DATA OBJ CLOSE

 14 / 15

MyRods put to use: ipump
● Use case: migrate data between nonfederated zones

– Recursively copies data objects
– Resumable, command-line type application, runs in tmux

● IRODS API-level programming
– Macro’s for use case patterns help a lot (authenticate, data transfer)
– Sufficiently convenient as basis for application development
– Feels like a racing car - iRODS on steroids

 15 / 15

Summary: Native is a hidden gem
● Native protocol requires only 25-50% (!) of network

bandwidth compared to the XML variant
● Deserves more language bindings besides C/C++!

– Implementation is a matter of weeks

● Powerful, flexible and highly efficient
– The Native protocol is competitive, even decades after its inception!

MyRods source code available at: https://github.com/tsmeele/MyRods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

